These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 20800569)
1. Ubiquinol (QH(2)) functions as a negative regulator of purine nucleotide inhibition of Acanthamoeba castellanii mitochondrial uncoupling protein. Woyda-Ploszczyca A; Jarmuszkiewicz W Biochim Biophys Acta; 2011 Jan; 1807(1):42-52. PubMed ID: 20800569 [TBL] [Abstract][Full Text] [Related]
2. In phosphorylating Acanthamoeba castellanii mitochondria the sensitivity of uncoupling protein activity to GTP depends on the redox state of quinone. Jarmuszkiewicz W; Swida A; Czarna M; Antos N; Sluse-Goffart CM; Sluse FE J Bioenerg Biomembr; 2005 Apr; 37(2):97-107. PubMed ID: 15906155 [TBL] [Abstract][Full Text] [Related]
3. Redox state of quinone affects sensitivity of Acanthamoeba castellanii mitochondrial uncoupling protein to purine nucleotides. Swida A; Woyda-Ploszczyca A; Jarmuszkiewicz W Biochem J; 2008 Jul; 413(2):359-67. PubMed ID: 18402555 [TBL] [Abstract][Full Text] [Related]
4. Hydroxynonenal, a lipid peroxidation end product, stimulates uncoupling protein activity in Acanthamoeba castellanii mitochondria; the sensitivity of the inducible activity to purine nucleotides depends on the membranous ubiquinone redox state. Woyda-Ploszczyca AM; Jarmuszkiewicz W J Bioenerg Biomembr; 2012 Oct; 44(5):525-38. PubMed ID: 22798183 [TBL] [Abstract][Full Text] [Related]
6. Uncoupling protein 1 inhibition by purine nucleotides is under the control of the endogenous ubiquinone redox state. Swida-Barteczka A; Woyda-Ploszczyca A; Sluse FE; Jarmuszkiewicz W Biochem J; 2009 Nov; 424(2):297-306. PubMed ID: 19747168 [TBL] [Abstract][Full Text] [Related]
7. Hydroxynonenal-stimulated activity of the uncoupling protein in Acanthamoeba castellanii mitochondria under phosphorylating conditions. Woyda-Ploszczyca A; Jarmuszkiewicz W Biol Chem; 2013 May; 394(5):649-58. PubMed ID: 23362201 [TBL] [Abstract][Full Text] [Related]
8. Two-stage nucleotide binding mechanism and its implications to H+ transport inhibition of the uncoupling protein from brown adipose tissue mitochondria. Huang SG; Klingenberg M Biochemistry; 1996 Jun; 35(24):7846-54. PubMed ID: 8672485 [TBL] [Abstract][Full Text] [Related]
9. Identification and characterization of a protozoan uncoupling protein in Acanthamoeba castellanii. Jarmuszkiewicz W; Sluse-Goffart CM; Hryniewiecka L; Sluse FE J Biol Chem; 1999 Aug; 274(33):23198-202. PubMed ID: 10438491 [TBL] [Abstract][Full Text] [Related]
10. Activation of alternative oxidase and uncoupling protein lowers hydrogen peroxide formation in amoeba Acanthamoeba castellanii mitochondria. Czarna M; Jarmuszkiewicz W FEBS Lett; 2005 Jun; 579(14):3136-40. PubMed ID: 15919080 [TBL] [Abstract][Full Text] [Related]
11. A comparative study of the inhibitory effects of purine nucleotides and carboxyatractylate on the uncoupling protein-3 and adenine nucleotide translocase. Komelina NP; Amerkhanov ZG Acta Biochim Pol; 2010; 57(4):413-9. PubMed ID: 21152446 [TBL] [Abstract][Full Text] [Related]
12. Regulation of Acanthamoeba castellanii alternative oxidase activity by mutual exclusion of purine nucleotides; ATP's inhibitory effect. Woyda-Ploszczyca AM; Sluse FE; Jarmuszkiewicz W Biochim Biophys Acta; 2009 Apr; 1787(4):264-71. PubMed ID: 19366609 [TBL] [Abstract][Full Text] [Related]
13. Chloride channel properties of the uncoupling protein from brown adipose tissue mitochondria: a patch-clamp study. Huang SG; Klingenberg M Biochemistry; 1996 Dec; 35(51):16806-14. PubMed ID: 8988019 [TBL] [Abstract][Full Text] [Related]
14. Effect of pH and MgCl2 on the binding of purine nucleotides to the uncoupling protein in membrane particles from brown fat mitochondria. Rafael J; Pampel I; Wang X Eur J Biochem; 1994 Aug; 223(3):971-80. PubMed ID: 8055974 [TBL] [Abstract][Full Text] [Related]
16. The effect of growth at low temperature on the activity and expression of the uncoupling protein in Acanthamoeba castellanii mitochondria. Jarmuszkiewicz W; Antos N; Swida A; Czarna M; Sluse FE FEBS Lett; 2004 Jul; 569(1-3):178-84. PubMed ID: 15225630 [TBL] [Abstract][Full Text] [Related]
17. The conserved regulation of mitochondrial uncoupling proteins: From unicellular eukaryotes to mammals. Woyda-Ploszczyca AM; Jarmuszkiewicz W Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):21-33. PubMed ID: 27751905 [TBL] [Abstract][Full Text] [Related]
18. Regulation of uncoupling protein activity in phosphorylating potato tuber mitochondria. Navet R; Douette P; Puttine-Marique F; Sluse-Goffart CM; Jarmuszkiewicz W; Sluse FE FEBS Lett; 2005 Aug; 579(20):4437-42. PubMed ID: 16061228 [TBL] [Abstract][Full Text] [Related]
19. Different effects of guanine nucleotides (GDP and GTP) on protein-mediated mitochondrial proton leak. Woyda-Ploszczyca AM; Jarmuszkiewicz W PLoS One; 2014; 9(6):e98969. PubMed ID: 24904988 [TBL] [Abstract][Full Text] [Related]
20. The contribution of uncoupling protein and ATP synthase to state 3 respiration in Acanthamoeba castellanii mitochondria. Jarmuszkiewicz W; Czarna M; Sluse-Goffart C; Sluse FE Acta Biochim Pol; 2004; 51(2):533-8. PubMed ID: 15218546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]