These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 20800569)

  • 21. Sensitivity of the aldehyde-induced and free fatty acid-induced activities of plant uncoupling protein to GTP is regulated by the ubiquinone reduction level.
    Woyda-Ploszczyca AM; Jarmuszkiewicz W
    Plant Physiol Biochem; 2014 Jun; 79():109-16. PubMed ID: 24705332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescent nucleotide derivatives as specific probes for the uncoupling protein: thermodynamics and kinetics of binding and the control by pH.
    Huang SG; Klingenberg M
    Biochemistry; 1995 Jan; 34(1):349-60. PubMed ID: 7819218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of uncoupling protein in brown-fat mitochondria by purine nucleotides. Chemical modification by diazobenzenesulfonate.
    Kopecký J; Jezek P; Drahota Z; Houstĕk J
    Eur J Biochem; 1987 May; 164(3):687-94. PubMed ID: 3032627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetically modified Arabidopsis thaliana cells reveal the involvement of the mitochondrial fatty acid composition in membrane basal and uncoupling protein-mediated proton leaks.
    Hourton-Cabassa C; Matos AR; Arrabaça J; Demandre C; Zachowski A; Moreau F
    Plant Cell Physiol; 2009 Dec; 50(12):2084-91. PubMed ID: 19875678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox state of endogenous coenzyme q modulates the inhibition of linoleic acid-induced uncoupling by guanosine triphosphate in isolated skeletal muscle mitochondria.
    Jarmuszkiewicz W; Navet R; Alberici LC; Douette P; Sluse-Goffart CM; Sluse FE; Vercesi AE
    J Bioenerg Biomembr; 2004 Oct; 36(5):493-502. PubMed ID: 15534396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nature of the masking of nucleotide-binding sites in brown adipose tissue mitochondria. Involvement of endogenous adenosine triphosphate.
    Huang SG; Klingenberg M
    Eur J Biochem; 1995 May; 229(3):718-25. PubMed ID: 7758468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial UCPs: new insights into regulation and impact.
    Sluse FE; Jarmuszkiewicz W; Navet R; Douette P; Mathy G; Sluse-Goffart CM
    Biochim Biophys Acta; 2006; 1757(5-6):480-5. PubMed ID: 16597432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alkaline pH, membrane potential, and magnesium cations are negative modulators of purine nucleotide inhibition of H+ and Cl- transport through the uncoupling protein of brown adipose tissue mitochondria.
    Jezek P; Houstĕk J; Drahota Z
    J Bioenerg Biomembr; 1988 Oct; 20(5):603-22. PubMed ID: 2463983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uncoupling proteins in mitochondria of plants and some microorganisms.
    Jarmuszkiewicz W
    Acta Biochim Pol; 2001; 48(1):145-55. PubMed ID: 11440164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activating omega-6 polyunsaturated fatty acids and inhibitory purine nucleotides are high affinity ligands for novel mitochondrial uncoupling proteins UCP2 and UCP3.
    Zackova M; Skobisová E; Urbánková E; Jezek P
    J Biol Chem; 2003 Jun; 278(23):20761-9. PubMed ID: 12670931
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acute knockdown of uncoupling protein-2 increases uncoupling via the adenine nucleotide transporter and decreases oxidative stress in diabetic kidneys.
    Friederich-Persson M; Aslam S; Nordquist L; Welch WJ; Wilcox CS; Palm F
    PLoS One; 2012; 7(7):e39635. PubMed ID: 22768304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diabetes-induced up-regulation of uncoupling protein-2 results in increased mitochondrial uncoupling in kidney proximal tubular cells.
    Friederich M; Fasching A; Hansell P; Nordquist L; Palm F
    Biochim Biophys Acta; 2008; 1777(7-8):935-40. PubMed ID: 18439413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A sequence related to a DNA recognition element is essential for the inhibition by nucleotides of proton transport through the mitochondrial uncoupling protein.
    Bouillaud F; Arechaga I; Petit PX; Raimbault S; Levi-Meyrueis C; Casteilla L; Laurent M; Rial E; Ricquier D
    EMBO J; 1994 Apr; 13(8):1990-7. PubMed ID: 8168495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone).
    Echtay KS; Winkler E; Frischmuth K; Klingenberg M
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1416-21. PubMed ID: 11171965
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of the mitochondrial carrier that provides Yarrowia lipolytica with a fatty acid-induced and nucleotide-sensitive uncoupling protein-like activity.
    Luévano-Martínez LA; Moyano E; de Lacoba MG; Rial E; Uribe-Carvajal S
    Biochim Biophys Acta; 2010 Jan; 1797(1):81-8. PubMed ID: 19766093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of the pH sensor for nucleotide binding in the uncoupling protein from brown adipose tissue.
    Winkler E; Wachter E; Klingenberg M
    Biochemistry; 1997 Jan; 36(1):148-55. PubMed ID: 8993328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The interplay between mitochondrial reactive oxygen species formation and the coenzyme Q reduction level.
    Dominiak K; Koziel A; Jarmuszkiewicz W
    Redox Biol; 2018 Sep; 18():256-265. PubMed ID: 30059902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of oxidative stress on Acanthamoeba castellanii mitochondrial bioenergetics depends on cell growth stage.
    Woyda-Ploszczyca A; Koziel A; Antos-Krzeminska N; Jarmuszkiewicz W
    J Bioenerg Biomembr; 2011 Jun; 43(3):217-25. PubMed ID: 21523407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition by purine nucleotides of the release of reactive oxygen species from muscle mitochondria: indication for a function of uncoupling proteins as superoxide anion transporters.
    Wojtczak L; Lebiedzińska M; Suski JM; Więckowski MR; Schönfeld P
    Biochem Biophys Res Commun; 2011 Apr; 407(4):772-6. PubMed ID: 21439941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature-dependent effects of cadmium and purine nucleotides on mitochondrial aconitase from a marine ectotherm, Crassostrea virginica: a role of temperature in oxidative stress and allosteric enzyme regulation.
    Cherkasov AA; Overton RA; Sokolov EP; Sokolova IM
    J Exp Biol; 2007 Jan; 210(Pt 1):46-55. PubMed ID: 17170147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.