These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 20800650)
21. Expression of CD133 confers malignant potential by regulating metalloproteinases in human hepatocellular carcinoma. Kohga K; Tatsumi T; Takehara T; Tsunematsu H; Shimizu S; Yamamoto M; Sasakawa A; Miyagi T; Hayashi N J Hepatol; 2010 Jun; 52(6):872-9. PubMed ID: 20395004 [TBL] [Abstract][Full Text] [Related]
22. Promoter hypomethylation regulates CD133 expression in human gliomas. Tabu K; Sasai K; Kimura T; Wang L; Aoyanagi E; Kohsaka S; Tanino M; Nishihara H; Tanaka S Cell Res; 2008 Oct; 18(10):1037-46. PubMed ID: 18679414 [TBL] [Abstract][Full Text] [Related]
23. BMP4 administration induces differentiation of CD133+ hepatic cancer stem cells, blocking their contributions to hepatocellular carcinoma. Zhang L; Sun H; Zhao F; Lu P; Ge C; Li H; Hou H; Yan M; Chen T; Jiang G; Xie H; Cui Y; Huang X; Fan J; Yao M; Li J Cancer Res; 2012 Aug; 72(16):4276-85. PubMed ID: 22773665 [TBL] [Abstract][Full Text] [Related]
25. mTOR signal and hypoxia-inducible factor-1 alpha regulate CD133 expression in cancer cells. Matsumoto K; Arao T; Tanaka K; Kaneda H; Kudo K; Fujita Y; Tamura D; Aomatsu K; Tamura T; Yamada Y; Saijo N; Nishio K Cancer Res; 2009 Sep; 69(18):7160-4. PubMed ID: 19738050 [TBL] [Abstract][Full Text] [Related]
26. The PEA-15/PED protein protects glioblastoma cells from glucose deprivation-induced apoptosis via the ERK/MAP kinase pathway. Eckert A; Böck BC; Tagscherer KE; Haas TL; Grund K; Sykora J; Herold-Mende C; Ehemann V; Hollstein M; Chneiweiss H; Wiestler OD; Walczak H; Roth W Oncogene; 2008 Feb; 27(8):1155-66. PubMed ID: 17700518 [TBL] [Abstract][Full Text] [Related]
27. CD133 and BMI1 expressions and its prognostic role in primary glioblastoma. Sibin MK; Lavanya CH; Bhat DI; Rao N; Geethashree N; Vibhuti W; Chetan GK J Genet; 2015 Dec; 94(4):689-96. PubMed ID: 26690524 [TBL] [Abstract][Full Text] [Related]
28. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Wang J; Sakariassen PØ; Tsinkalovsky O; Immervoll H; Bøe SO; Svendsen A; Prestegarden L; Røsland G; Thorsen F; Stuhr L; Molven A; Bjerkvig R; Enger PØ Int J Cancer; 2008 Feb; 122(4):761-8. PubMed ID: 17955491 [TBL] [Abstract][Full Text] [Related]
29. CD133 is a marker of bioenergetic stress in human glioma. Griguer CE; Oliva CR; Gobin E; Marcorelles P; Benos DJ; Lancaster JR; Gillespie GY PLoS One; 2008; 3(11):e3655. PubMed ID: 18985161 [TBL] [Abstract][Full Text] [Related]
30. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Yin S; Li J; Hu C; Chen X; Yao M; Yan M; Jiang G; Ge C; Xie H; Wan D; Yang S; Zheng S; Gu J Int J Cancer; 2007 Apr; 120(7):1444-50. PubMed ID: 17205516 [TBL] [Abstract][Full Text] [Related]
31. CD133 is a temporary marker of cancer stem cells in small cell lung cancer, but not in non-small cell lung cancer. Cui F; Wang J; Chen D; Chen YJ Oncol Rep; 2011 Mar; 25(3):701-8. PubMed ID: 21174061 [TBL] [Abstract][Full Text] [Related]
33. Glioblastoma cells negative for the anti-CD133 antibody AC133 express a truncated variant of the CD133 protein. Osmond TL; Broadley KW; McConnell MJ Int J Mol Med; 2010 Jun; 25(6):883-8. PubMed ID: 20428792 [TBL] [Abstract][Full Text] [Related]
34. Mutation of N-linked glycosylation at Asn548 in CD133 decreases its ability to promote hepatoma cell growth. Liu Y; Ren S; Xie L; Cui C; Xing Y; Liu C; Cao B; Yang F; Li Y; Chen X; Wei Y; Lu H; Jiang J Oncotarget; 2015 Aug; 6(24):20650-60. PubMed ID: 26029999 [TBL] [Abstract][Full Text] [Related]
35. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Soeda A; Park M; Lee D; Mintz A; Androutsellis-Theotokis A; McKay RD; Engh J; Iwama T; Kunisada T; Kassam AB; Pollack IF; Park DM Oncogene; 2009 Nov; 28(45):3949-59. PubMed ID: 19718046 [TBL] [Abstract][Full Text] [Related]
36. Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Baba T; Convery PA; Matsumura N; Whitaker RS; Kondoh E; Perry T; Huang Z; Bentley RC; Mori S; Fujii S; Marks JR; Berchuck A; Murphy SK Oncogene; 2009 Jan; 28(2):209-18. PubMed ID: 18836486 [TBL] [Abstract][Full Text] [Related]
37. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Ma S; Chan KW; Lee TK; Tang KH; Wo JY; Zheng BJ; Guan XY Mol Cancer Res; 2008 Jul; 6(7):1146-53. PubMed ID: 18644979 [TBL] [Abstract][Full Text] [Related]
38. ANXA3/JNK Signaling Promotes Self-Renewal and Tumor Growth, and Its Blockade Provides a Therapeutic Target for Hepatocellular Carcinoma. Tong M; Fung TM; Luk ST; Ng KY; Lee TK; Lin CH; Yam JW; Chan KW; Ng F; Zheng BJ; Yuan YF; Xie D; Lo CM; Man K; Guan XY; Ma S Stem Cell Reports; 2015 Jul; 5(1):45-59. PubMed ID: 26095609 [TBL] [Abstract][Full Text] [Related]
39. Glioblastoma and stem cells. Altaner C Neoplasma; 2008; 55(5):369-74. PubMed ID: 18665745 [TBL] [Abstract][Full Text] [Related]
40. Proline-rich tyrosine kinase 2 (Pyk2) promotes proliferation and invasiveness of hepatocellular carcinoma cells through c-Src/ERK activation. Sun CK; Man K; Ng KT; Ho JW; Lim ZX; Cheng Q; Lo CM; Poon RT; Fan ST Carcinogenesis; 2008 Nov; 29(11):2096-105. PubMed ID: 18765415 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]