These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 20800892)

  • 1. Effects of small pulsed nanocurrents on cell viability in vitro and in vivo: implications for biomedical electrodes.
    Gabi M; Bullen ME; Agarkova I; Schmidt D; Schoenauer R; Brokopp C; Emmert MY; Larmagnac A; Sannomiya T; Weber B; Wilhelm MJ; Vörös J; Hoerstrup SP
    Biomaterials; 2010 Nov; 31(33):8666-73. PubMed ID: 20800892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic neural stimulation with thin-film, iridium oxide electrodes.
    Weiland JD; Anderson DJ
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):911-8. PubMed ID: 10916262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants.
    Newbold C; Richardson R; Huang CQ; Milojevic D; Cowan R; Shepherd R
    J Neural Eng; 2004 Dec; 1(4):218-27. PubMed ID: 15876642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo.
    Duan YY; Clark GM; Cowan RS
    Biomaterials; 2004 Aug; 25(17):3813-28. PubMed ID: 15020157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, in vitro and in vivo assessment of a multi-channel sieve electrode with integrated multiplexer.
    Ramachandran A; Schuettler M; Lago N; Doerge T; Koch KP; Navarro X; Hoffmann KP; Stieglitz T
    J Neural Eng; 2006 Jun; 3(2):114-24. PubMed ID: 16705267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo impedance evaluation of Au/PI microelectrode with surface modulated by alkanethiolate self-assembled monolayers.
    Lin HL; Lin CC; Ju MS; Liao JD
    Biomed Microdevices; 2011 Feb; 13(1):243-53. PubMed ID: 20972888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Radiofrequency ablation ex vivo: comparison of the efficacy of impedance control mode versus manual control mode by using an internally cooled clustered electrode].
    Schmidt D; Trübenbach J; König CW; Brieger J; Duda S; Claussen CD; Pereira PL
    Rofo; 2003 Jul; 175(7):967-72. PubMed ID: 12847653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo electrochemical characterization and inflammatory response of multiwalled carbon nanotube-based electrodes in rat hippocampus.
    Minnikanti S; Pereira MG; Jaraiedi S; Jackson K; Costa-Neto CM; Li Q; Peixoto N
    J Neural Eng; 2010 Feb; 7(1):16002. PubMed ID: 20054103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction force and tissue change during removal of a tined intramuscular electrode from rat gastrocnemius.
    Bhadra N; Mortimer JT
    Ann Biomed Eng; 2006 Jun; 34(6):1042-50. PubMed ID: 16783659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impedance characterization of microarray recording electrodes in vitro.
    Merrill DR; Tresco PA
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1960-5. PubMed ID: 16285400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-walled carbon nanotubes deposited on surface electrodes to improve interface impedance.
    Gabriel G; Gómez-Martínez R; Villa R
    Physiol Meas; 2008 Jun; 29(6):S203-12. PubMed ID: 18544808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioimpedance modeling to monitor astrocytic response to chronically implanted electrodes.
    McConnell GC; Butera RJ; Bellamkonda RV
    J Neural Eng; 2009 Oct; 6(5):055005. PubMed ID: 19721187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
    Mercanzini A; Colin P; Bensadoun JC; Bertsch A; Renaud P
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Death of dopaminergic neurons in vitro and in nigral grafts: reevaluating the role of caspase activation.
    Hurelbrink CB; Armstrong RJ; Luheshi LM; Dunnett SB; Rosser AE; Barker RA
    Exp Neurol; 2001 Sep; 171(1):46-58. PubMed ID: 11520120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Experimental study of implantable engineered liver tissue using type I collagen gel as scaffold].
    Zhao YS; Xu YX; Zhang BF; Wu X; Liu JC; Zhang L; Tang LA; Hang ZQ
    Zhonghua Yi Xue Za Zhi; 2007 Aug; 87(29):2065-8. PubMed ID: 17925181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element modeling of electrode-skin contact impedance in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):335-43. PubMed ID: 8375870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Note: Characterization of electrode materials for dielectric spectroscopy.
    Malleo D; Nevill JT; van Ooyen A; Schnakenberg U; Lee LP; Morgan H
    Rev Sci Instrum; 2010 Jan; 81(1):016104. PubMed ID: 20113135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically controlling cell adhesion, growth and migration.
    Gabi M; Larmagnac A; Schulte P; Vörös J
    Colloids Surf B Biointerfaces; 2010 Sep; 79(2):365-71. PubMed ID: 20541918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Impedance of cochlear implant electrode array in scalae tympani].
    Du Q; Wang ZM
    Zhonghua Yi Xue Za Zhi; 2008 Dec; 88(46):3302-4. PubMed ID: 19159560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.