These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20801018)

  • 21. Comparative evaluation of biogas production from poultry droppings, cow dung and lemon grass.
    Alfa IM; Dahunsi SO; Iorhemen OT; Okafor CC; Ajayi SA
    Bioresour Technol; 2014 Apr; 157():270-7. PubMed ID: 24561633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical characteristics of biomass from nature conservation management for methane production.
    Melts I; Normak A; Nurk L; Heinsoo K
    Bioresour Technol; 2014 Sep; 167():226-31. PubMed ID: 24983694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large-scale biohydrogen production from bio-oil.
    Sarkar S; Kumar A
    Bioresour Technol; 2010 Oct; 101(19):7350-61. PubMed ID: 20452203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bermuda grass as feedstock for biofuel production: a review.
    Xu J; Wang Z; Cheng JJ
    Bioresour Technol; 2011 Sep; 102(17):7613-20. PubMed ID: 21683586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Climate balance of biogas upgrading systems.
    Pertl A; Mostbauer P; Obersteiner G
    Waste Manag; 2010 Jan; 30(1):92-9. PubMed ID: 19783421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Economic assessment of the integrated generation of solid fuel and biogas from biomass (IFBB) in comparison to different energy recovery, animal-based and non-refining management systems.
    Blumenstein B; Bühle L; Wachendorf M; Möller D
    Bioresour Technol; 2012 Sep; 119():312-23. PubMed ID: 22750498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pretreatment of paper tube residuals for improved biogas production.
    Teghammar A; Yngvesson J; Lundin M; Taherzadeh MJ; Horváth IS
    Bioresour Technol; 2010 Feb; 101(4):1206-12. PubMed ID: 19800220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energetic conversion of European semi-natural grassland silages through the integrated generation of solid fuel and biogas from biomass: energy yields and the fate of organic compounds.
    Hensgen F; Bühle L; Donnison I; Heinsoo K; Wachendorf M
    Bioresour Technol; 2014 Feb; 154():192-200. PubMed ID: 24393744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Site-specific economic and ecological analysis of enhanced production, upgrade and feed-in of biomethane from organic wastes.
    Lindorfer J; Schwarz MM
    Water Sci Technol; 2013; 67(3):682-8. PubMed ID: 23202576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Process design and economic analysis of a citrus waste biorefinery with biofuels and limonene as products.
    Lohrasbi M; Pourbafrani M; Niklasson C; Taherzadeh MJ
    Bioresour Technol; 2010 Oct; 101(19):7382-8. PubMed ID: 20488693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of biogas upgrading technologies and future perspectives: a review.
    Kapoor R; Ghosh P; Kumar M; Vijay VK
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11631-11661. PubMed ID: 30877529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of sward maturity and pre-conditioning temperature on the energy production from grass silage through the integrated generation of solid fuel and biogas from biomass (IFBB): 1. The fate of mineral compounds.
    Richter F; Fricke T; Wachendorf M
    Bioresour Technol; 2011 Apr; 102(7):4855-65. PubMed ID: 21320774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biogas upgrading and utilization: Current status and perspectives.
    Angelidaki I; Treu L; Tsapekos P; Luo G; Campanaro S; Wenzel H; Kougias PG
    Biotechnol Adv; 2018; 36(2):452-466. PubMed ID: 29360505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disintegration in the biogas sector--technologies and effects.
    Schumacher B; Wedwitschka H; Hofmann J; Denysenko V; Lorenz H; Liebetrau J
    Bioresour Technol; 2014 Sep; 168():2-6. PubMed ID: 24589495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CONTEXT MATTERS: THE IMPORTANCE OF MARKET CHARACTERISTICS IN THE VOLATILITY OF FEEDSTOCK COSTS FOR BIOGAS PLANTS.
    Mertens A; Van Meensel J; Mondelaers K; Buysse J
    Commun Agric Appl Biol Sci; 2015; 80(1):23-8. PubMed ID: 26630751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biogas production and valorization by means of a two-step biological process.
    Converti A; Oliveira RP; Torres BR; Lodi A; Zilli M
    Bioresour Technol; 2009 Dec; 100(23):5771-6. PubMed ID: 19559603
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A; Galatola M
    Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous biogas production from fodder beet silage as sole substrate.
    Scherer PA; Dobler S; Rohardt S; Loock R; Büttner B; Nöldeke P; Brettschuh A
    Water Sci Technol; 2003; 48(4):229-33. PubMed ID: 14531447
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cost analysis of concepts for a demand oriented biogas supply for flexible power generation.
    Hahn H; Ganagin W; Hartmann K; Wachendorf M
    Bioresour Technol; 2014 Oct; 170():211-220. PubMed ID: 25146313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal-organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy.
    Chaemchuen S; Kabir NA; Zhou K; Verpoort F
    Chem Soc Rev; 2013 Dec; 42(24):9304-32. PubMed ID: 24045837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.