These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20801024)

  • 61. Enhanced adsorption and antifouling performance of anion-exchange resin by the effect of incorporated Fe3O4 for removing humic acid.
    Shuang C; Wang M; Zhou Q; Zhou W; Li A
    Water Res; 2013 Oct; 47(16):6406-14. PubMed ID: 24011841
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Biosorption of humic and fulvic acids to live activated sludge biomass.
    Esparza-Soto M; Westerhoff P
    Water Res; 2003 May; 37(10):2301-10. PubMed ID: 12727238
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review.
    Lipczynska-Kochany E
    Chemosphere; 2018 Jul; 202():420-437. PubMed ID: 29579677
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Biocalalyst effects of immobilized anthraquinone on the anaerobic reduction of azo dyes by the salt-tolerant bacteria.
    Guo J; Zhou J; Wang D; Tian C; Wang P; Salah Uddin M; Yu H
    Water Res; 2007 Jan; 41(2):426-32. PubMed ID: 17129594
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [The effects of the humic substances on Azoreduction by Shewanella spp].
    Xu ZC; Hong YG; Luo W; Xu MY; Sun GP
    Wei Sheng Wu Xue Bao; 2006 Aug; 46(4):591-7. PubMed ID: 17037061
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Impacts of microbial redox conditions on the phase distribution of pyrene in soil-water systems.
    Kim HS; Roper JC; Pfaender FK
    Environ Pollut; 2008 Mar; 152(1):106-15. PubMed ID: 17629603
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Selection of anionic exchange resins for removal of natural organic matter (NOM) fractions.
    Cornelissen ER; Moreau N; Siegers WG; Abrahamse AJ; Rietveld LC; Grefte A; Dignum M; Amy G; Wessels LP
    Water Res; 2008 Jan; 42(1-2):413-23. PubMed ID: 17706268
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Anaerobic humus respiration by Shewanella cinica D14T].
    Xu ZC; Hong YG; Luo W; Chen XJ; Sun GP; Xu MY; Guo J; Cen YH
    Wei Sheng Wu Xue Bao; 2006 Dec; 46(6):973-8. PubMed ID: 17302164
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene.
    Bradley PM; Chapelle FH; Lovley DR
    Appl Environ Microbiol; 1998 Aug; 64(8):3102-5. PubMed ID: 9687484
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures.
    Gou M; Qu Y; Zhou J; Ma F; Tan L
    J Hazard Mater; 2009 Oct; 170(1):314-9. PubMed ID: 19473759
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Pathways of reductive 2,4-dinitroanisole (DNAN) biotransformation in sludge.
    Olivares C; Liang J; Abrell L; Sierra-Alvarez R; Field JA
    Biotechnol Bioeng; 2013 Jun; 110(6):1595-604. PubMed ID: 23280483
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Transformations of nanomaterials in the environment.
    Lowry GV; Gregory KB; Apte SC; Lead JR
    Environ Sci Technol; 2012 Jul; 46(13):6893-9. PubMed ID: 22582927
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Interactions between Humic Substances and Microorganisms and Their Implications for Nature-like Bioremediation Technologies.
    Kulikova NA; Perminova IV
    Molecules; 2021 May; 26(9):. PubMed ID: 34063010
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Application of redox mediators in bioelectrochemical systems.
    Martinez CM; Alvarez LH
    Biotechnol Adv; 2018; 36(5):1412-1423. PubMed ID: 29857046
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Production of humic substances through coal-solubilizing bacteria.
    Valero N; Gómez L; Pantoja M; Ramírez R
    Braz J Microbiol; 2014; 45(3):911-8. PubMed ID: 25477925
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Oxidation and reduction of redox-sensitive elements in the presence of humic substances in subsurface environments: A review.
    Lee S; Roh Y; Koh DC
    Chemosphere; 2019 Apr; 220():86-97. PubMed ID: 30579952
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Relationship between electron donor and microorganism on the dechlorination of carbon tetrachloride by an anaerobic enrichment culture.
    Doong RA; Chang SM
    Chemosphere; 2000 Jun; 40(12):1427-33. PubMed ID: 10789984
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Tailoring partially reduced graphene oxide as redox mediator for enhanced biotransformation of iopromide under methanogenic and sulfate-reducing conditions.
    Toral-Sánchez E; Rangel-Mendez JR; Ascacio Valdés JA; Aguilar CN; Cervantes FJ
    Bioresour Technol; 2017 Jan; 223():269-276. PubMed ID: 27969578
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The role of sulphate reduction on the reductive S decolorization of the azo dye reactive orange 14.
    Cervantes FJ; Enriquez JE; Mendoza-Hernandez MR; Razo-Flores E; Field JA
    Water Sci Technol; 2006; 54(2):171-7. PubMed ID: 16939099
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp.
    Gälli R; McCarty PL
    Appl Environ Microbiol; 1989 Apr; 55(4):837-44. PubMed ID: 2729985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.