These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
72 related articles for article (PubMed ID: 20801027)
1. An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: application to the production of anti-fungal compounds. Caldeira AT; Arteiro JM; Roseiro JC; Neves J; Vicente H Bioresour Technol; 2011 Jan; 102(2):1496-502. PubMed ID: 20801027 [TBL] [Abstract][Full Text] [Related]
3. Artificial intelligence based optimization of exocellular glucansucrase production from Leuconostoc dextranicum NRRL B-1146. Singh A; Majumder A; Goyal A Bioresour Technol; 2008 Nov; 99(17):8201-6. PubMed ID: 18440808 [TBL] [Abstract][Full Text] [Related]
4. Artificial neural network modeling and genetic algorithm based medium optimization for the improved production of marine biosurfactant. Sivapathasekaran C; Mukherjee S; Ray A; Gupta A; Sen R Bioresour Technol; 2010 Apr; 101(8):2884-7. PubMed ID: 19914826 [TBL] [Abstract][Full Text] [Related]
5. Enhanced production of antifungal lipopeptides by Bacillus amyloliquefaciens for biocontrol of postharvest disease. Pretorius D; van Rooyen J; Clarke KG N Biotechnol; 2015 Mar; 32(2):243-52. PubMed ID: 25541516 [TBL] [Abstract][Full Text] [Related]
6. Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Wang ZW; Liu XL Bioresour Technol; 2008 Nov; 99(17):8245-51. PubMed ID: 18448333 [TBL] [Abstract][Full Text] [Related]
7. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Arrebola E; Jacobs R; Korsten L J Appl Microbiol; 2010 Feb; 108(2):386-95. PubMed ID: 19674188 [TBL] [Abstract][Full Text] [Related]
8. Application of artificial neural networks to describe the combined effect of pH and NaCl on the heat resistance of Bacillus stearothermophilus. Esnoz A; Periago PM; Conesa R; Palop A Int J Food Microbiol; 2006 Feb; 106(2):153-8. PubMed ID: 16216369 [TBL] [Abstract][Full Text] [Related]
9. Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Gangadharan D; Sivaramakrishnan S; Nampoothiri KM; Sukumaran RK; Pandey A Bioresour Technol; 2008 Jul; 99(11):4597-602. PubMed ID: 17761415 [TBL] [Abstract][Full Text] [Related]
10. Artificial neural networks in analysis of indinavir and its degradation products retention. Jancić-Stojanović B; Ivanović D; Malenović A; Medenica M Talanta; 2009 Apr; 78(1):107-12. PubMed ID: 19174211 [TBL] [Abstract][Full Text] [Related]
11. [Participation of the antibiotics of Bac. pumilus and Bac. subtilis in the regulation of bacterial spore formation]. Lukin AA; Korolev VI Antibiotiki; 1979 Mar; 24(3):182-5. PubMed ID: 109036 [TBL] [Abstract][Full Text] [Related]
12. Investigations on the sporicidal and fungicidal activity of disinfectants. Lensing HH; Oei HL Zentralbl Bakteriol Mikrobiol Hyg B; 1985 Dec; 181(6):487-95. PubMed ID: 3938146 [TBL] [Abstract][Full Text] [Related]
13. A neural network approach for the prediction of in vitro culture parameters for maximum biomass yields in hairy root cultures. Prakash O; Mehrotra S; Krishna A; Mishra BN J Theor Biol; 2010 Aug; 265(4):579-85. PubMed ID: 20561985 [TBL] [Abstract][Full Text] [Related]
14. Modelling and optimization of fermentation factors for enhancement of alkaline protease production by isolated Bacillus circulans using feed-forward neural network and genetic algorithm. Rao ChS; Sathish T; Mahalaxmi M; Laxmi GS; Rao RS; Prakasham RS J Appl Microbiol; 2008 Mar; 104(3):889-98. PubMed ID: 17953681 [TBL] [Abstract][Full Text] [Related]
15. Modeling the inactivation kinetics of bacillus spores by glutaraldehyde. Retta SM; Sagripanti JL Lett Appl Microbiol; 2008 May; 46(5):568-74. PubMed ID: 18397220 [TBL] [Abstract][Full Text] [Related]
16. A statistical approach for optimization of polyhydroxybutyrate production by Bacillus sphaericus NCIM 5149 under submerged fermentation using central composite design. Ramadas NV; Soccol CR; Pandey A Appl Biochem Biotechnol; 2010 Oct; 162(4):996-1007. PubMed ID: 19812909 [TBL] [Abstract][Full Text] [Related]
17. Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10. Chen L; Wang N; Wang X; Hu J; Wang S Bioresour Technol; 2010 Nov; 101(22):8822-7. PubMed ID: 20599380 [TBL] [Abstract][Full Text] [Related]
18. Artificial neural networks in prediction of antifungal activity of a series of pyridine derivatives against Candida albicans. Buciński A; Socha A; Wnuk M; Baczek T; Nowaczyk A; Krysiński J; Goryński K; Koba M J Microbiol Methods; 2009 Jan; 76(1):25-9. PubMed ID: 18824043 [TBL] [Abstract][Full Text] [Related]
19. Efficacy of pressure-assisted thermal processing, in combination with organic acids, against Bacillus amyloliquefaciens spores suspended in deionized water and carrot puree. Ratphitagsanti W; De Lamo-Castellvi S; Balasubramaniam VM; Yousef AE J Food Sci; 2010; 75(1):M46-52. PubMed ID: 20492185 [TBL] [Abstract][Full Text] [Related]
20. Artificial intelligence in predicting bladder cancer outcome: a comparison of neuro-fuzzy modeling and artificial neural networks. Catto JW; Linkens DA; Abbod MF; Chen M; Burton JL; Feeley KM; Hamdy FC Clin Cancer Res; 2003 Sep; 9(11):4172-7. PubMed ID: 14519642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]