BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 20801112)

  • 1. Growth differentiation factor 11 signaling controls retinoic acid activity for axial vertebral development.
    Lee YJ; McPherron A; Choe S; Sakai Y; Chandraratna RA; Lee SJ; Oh SP
    Dev Biol; 2010 Nov; 347(1):195-203. PubMed ID: 20801112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth differentiation factor 11 locally controls anterior-posterior patterning of the axial skeleton.
    Suh J; Eom JH; Kim NK; Woo KM; Baek JH; Ryoo HM; Lee SJ; Lee YS
    J Cell Physiol; 2019 Dec; 234(12):23360-23368. PubMed ID: 31183862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breaking constraint of mammalian axial formulae.
    Hauswirth GM; Garside VC; Wong LSF; Bildsoe H; Manent J; Chang YC; Nefzger CM; Firas J; Chen J; Rossello FJ; Polo JM; McGlinn E
    Nat Commun; 2022 Jan; 13(1):243. PubMed ID: 35017475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures.
    Abu-Abed S; Dollé P; Metzger D; Beckett B; Chambon P; Petkovich M
    Genes Dev; 2001 Jan; 15(2):226-40. PubMed ID: 11157778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The road to the vertebral formula.
    Mallo M; Vinagre T; Carapuço M
    Int J Dev Biol; 2009; 53(8-10):1469-81. PubMed ID: 19247958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PCSK5 and GDF11 expression in the hindgut region of mouse embryos with anorectal malformations.
    Tsuda T; Iwai N; Deguchi E; Kimura O; Ono S; Furukawa T; Sasaki Y; Fumino S; Kubota Y
    Eur J Pediatr Surg; 2011 Aug; 21(4):238-41. PubMed ID: 21480163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular basis for retinoic acid-induced axial truncation.
    Iulianella A; Beckett B; Petkovich M; Lohnes D
    Dev Biol; 1999 Jan; 205(1):33-48. PubMed ID: 9882496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinoic acid induces down-regulation of Wnt-3a, apoptosis and diversion of tail bud cells to a neural fate in the mouse embryo.
    Shum AS; Poon LL; Tang WW; Koide T; Chan BW; Leung YC; Shiroishi T; Copp AJ
    Mech Dev; 1999 Jun; 84(1-2):17-30. PubMed ID: 10473117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo.
    Sakai Y; Meno C; Fujii H; Nishino J; Shiratori H; Saijoh Y; Rossant J; Hamada H
    Genes Dev; 2001 Jan; 15(2):213-25. PubMed ID: 11157777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth differentiation factor 11 signals through the transforming growth factor-beta receptor ALK5 to regionalize the anterior-posterior axis.
    Andersson O; Reissmann E; Ibáñez CF
    EMBO Rep; 2006 Aug; 7(8):831-7. PubMed ID: 16845371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switching axial progenitors from producing trunk to tail tissues in vertebrate embryos.
    Jurberg AD; Aires R; Varela-Lasheras I; Nóvoa A; Mallo M
    Dev Cell; 2013 Jun; 25(5):451-62. PubMed ID: 23763947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ndrg2 regulates vertebral specification in differentiating somites.
    Zhu H; Zhao J; Zhou W; Li H; Zhou R; Zhang L; Zhao H; Cao J; Zhu X; Hu H; Ma G; He L; Yao Z; Yao L; Guo X
    Dev Biol; 2012 Sep; 369(2):308-18. PubMed ID: 22819676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos.
    Young T; Rowland JE; van de Ven C; Bialecka M; Novoa A; Carapuco M; van Nes J; de Graaff W; Duluc I; Freund JN; Beck F; Mallo M; Deschamps J
    Dev Cell; 2009 Oct; 17(4):516-26. PubMed ID: 19853565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The oxidizing enzyme CYP26a1 tightly regulates the availability of retinoic acid in the gastrulating mouse embryo to ensure proper head development and vasculogenesis.
    Ribes V; Fraulob V; Petkovich M; Dollé P
    Dev Dyn; 2007 Mar; 236(3):644-53. PubMed ID: 17211890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activin type IIA and IIB receptors mediate Gdf11 signaling in axial vertebral patterning.
    Oh SP; Yeo CY; Lee Y; Schrewe H; Whitman M; Li E
    Genes Dev; 2002 Nov; 16(21):2749-54. PubMed ID: 12414726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination of symmetric cyclic gene expression during somitogenesis by Suppressor of Hairless involves regulation of retinoic acid catabolism.
    Echeverri K; Oates AC
    Dev Biol; 2007 Jan; 301(2):388-403. PubMed ID: 17098223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cdx2 regulation of posterior development through non-Hox targets.
    Savory JG; Bouchard N; Pierre V; Rijli FM; De Repentigny Y; Kothary R; Lohnes D
    Development; 2009 Dec; 136(24):4099-110. PubMed ID: 19906845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgenic over-expression of growth differentiation factor 11 propeptide in skeleton results in transformation of the seventh cervical vertebra into a thoracic vertebra.
    Li Z; Kawasumi M; Zhao B; Moisyadi S; Yang J
    Mol Reprod Dev; 2010 Nov; 77(11):990-7. PubMed ID: 21049546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BMP and retinoic acid regulate anterior-posterior patterning of the non-axial mesoderm across the dorsal-ventral axis.
    Naylor RW; Skvarca LB; Thisse C; Thisse B; Hukriede NA; Davidson AJ
    Nat Commun; 2016 Jul; 7():12197. PubMed ID: 27406002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinoic acid-dependent regulation of miR-19 expression elicits vertebrate axis defects.
    Franzosa JA; Bugel SM; Tal TL; La Du JK; Tilton SC; Waters KM; Tanguay RL
    FASEB J; 2013 Dec; 27(12):4866-76. PubMed ID: 23975936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.