These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 20801237)

  • 1. The role of redox changes in oxygen sensing.
    Weir EK; Archer SL
    Respir Physiol Neurobiol; 2010 Dec; 174(3):182-91. PubMed ID: 20801237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of oxygen sensing: a key to therapy of pulmonary hypertension and patent ductus arteriosus.
    Weir EK; Obreztchikova M; Vargese A; Cabrera JA; Peterson DA; Hong Z
    Br J Pharmacol; 2008 Oct; 155(3):300-7. PubMed ID: 18641675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus.
    Dunham-Snary KJ; Hong ZG; Xiong PY; Del Paggio JC; Herr JE; Johri AM; Archer SL
    Pflugers Arch; 2016 Jan; 468(1):43-58. PubMed ID: 26395471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation.
    Archer SL; Weir EK; Reeve HL; Michelakis E
    Adv Exp Med Biol; 2000; 475():219-40. PubMed ID: 10849663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between calcium and reactive oxygen species in pulmonary arterial smooth muscle responses to hypoxia.
    Shimoda LA; Undem C
    Respir Physiol Neurobiol; 2010 Dec; 174(3):221-9. PubMed ID: 20801238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular mechanisms of oxygen-sensing in human ductus arteriosus smooth muscle cells: A comprehensive transcriptome profile reveals a central role for mitochondria.
    Bentley RET; Hindmarch CCT; Dunham-Snary KJ; Snetsinger B; Mewburn JD; Thébaud A; Lima PDA; Thébaud B; Archer SL
    Genomics; 2021 Sep; 113(5):3128-3140. PubMed ID: 34245829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells.
    Michelakis ED; Thébaud B; Weir EK; Archer SL
    J Mol Cell Cardiol; 2004 Dec; 37(6):1119-36. PubMed ID: 15572043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells.
    Waypa GB; Guzy R; Mungai PT; Mack MM; Marks JD; Roe MW; Schumacker PT
    Circ Res; 2006 Oct; 99(9):970-8. PubMed ID: 17008601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction.
    Sommer N; Strielkov I; Pak O; Weissmann N
    Eur Respir J; 2016 Jan; 47(1):288-303. PubMed ID: 26493804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase.
    Archer SL; Reeve HL; Michelakis E; Puttagunta L; Waite R; Nelson DP; Dinauer MC; Weir EK
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7944-9. PubMed ID: 10393927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PPAR{gamma} regulates hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells through NF-{kappa}B.
    Lu X; Murphy TC; Nanes MS; Hart CM
    Am J Physiol Lung Cell Mol Physiol; 2010 Oct; 299(4):L559-66. PubMed ID: 20622120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opposite effects of redox status on membrane potential, cytosolic calcium, and tone in pulmonary arteries and ductus arteriosus.
    Olschewski A; Hong Z; Peterson DA; Nelson DP; Porter VA; Weir EK
    Am J Physiol Lung Cell Mol Physiol; 2004 Jan; 286(1):L15-22. PubMed ID: 12842809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidant-redox regulation of pulmonary vascular responses to hypoxia and nitric oxide-cGMP signaling.
    Wolin MS; Gupte SA; Neo BH; Gao Q; Ahmad M
    Cardiol Rev; 2010; 18(2):89-93. PubMed ID: 20160535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen activates the Rho/Rho-kinase pathway and induces RhoB and ROCK-1 expression in human and rabbit ductus arteriosus by increasing mitochondria-derived reactive oxygen species: a newly recognized mechanism for sustaining ductal constriction.
    Kajimoto H; Hashimoto K; Bonnet SN; Haromy A; Harry G; Moudgil R; Nakanishi T; Rebeyka I; Thébaud B; Michelakis ED; Archer SL
    Circulation; 2007 Apr; 115(13):1777-88. PubMed ID: 17353442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute hypoxic pulmonary vasoconstriction: a model of oxygen sensing.
    Michelakis ED; Archer SL; Weir EK
    Physiol Res; 1995; 44(6):361-7. PubMed ID: 8798271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species as mediators of oxygen signaling during fetal-to-neonatal circulatory transition.
    Villamor E; Moreno L; Mohammed R; Pérez-Vizcaíno F; Cogolludo A
    Free Radic Biol Med; 2019 Oct; 142():82-96. PubMed ID: 30995535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen species and the control of vascular function.
    Wolin MS
    Am J Physiol Heart Circ Physiol; 2009 Mar; 296(3):H539-49. PubMed ID: 19151250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide.
    Archer SL; Wu XC; Thébaud B; Moudgil R; Hashimoto K; Michelakis ED
    Biol Chem; 2004; 385(3-4):205-16. PubMed ID: 15134333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ceramide mediates acute oxygen sensing in vascular tissues.
    Moreno L; Moral-Sanz J; Morales-Cano D; Barreira B; Moreno E; Ferrarini A; Pandolfi R; Ruperez FJ; Cortijo J; Sanchez-Luna M; Villamor E; Perez-Vizcaino F; Cogolludo A
    Antioxid Redox Signal; 2014 Jan; 20(1):1-14. PubMed ID: 23725018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction.
    Dunham-Snary KJ; Wu D; Potus F; Sykes EA; Mewburn JD; Charles RL; Eaton P; Sultanian RA; Archer SL
    Circ Res; 2019 Jun; 124(12):1727-1746. PubMed ID: 30922174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.