BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 20801411)

  • 1. Pluripotent stem cell-derived natural killer cells for cancer therapy.
    Knorr DA; Kaufman DS
    Transl Res; 2010 Sep; 156(3):147-54. PubMed ID: 20801411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Improved Method to Produce Clinical-Scale Natural Killer Cells from Human Pluripotent Stem Cells.
    Zhu H; Kaufman DS
    Methods Mol Biol; 2019; 2048():107-119. PubMed ID: 31396935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy.
    Knorr DA; Ni Z; Hermanson D; Hexum MK; Bendzick L; Cooper LJ; Lee DA; Kaufman DS
    Stem Cells Transl Med; 2013 Apr; 2(4):274-83. PubMed ID: 23515118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of innate immune cells from human pluripotent stem cells.
    Bernareggi D; Pouyanfard S; Kaufman DS
    Exp Hematol; 2019 Mar; 71():13-23. PubMed ID: 30611869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered human pluripotent stem cell-derived natural killer cells: the next frontier for cancer immunotherapy.
    Zhu H; Kaufman DS
    Blood Sci; 2019 Aug; 1(1):4-11. PubMed ID: 35402797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted Disruption of the β2-Microglobulin Gene Minimizes the Immunogenicity of Human Embryonic Stem Cells.
    Wang D; Quan Y; Yan Q; Morales JE; Wetsel RA
    Stem Cells Transl Med; 2015 Oct; 4(10):1234-45. PubMed ID: 26285657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concise Review: Human Pluripotent Stem Cells to Produce Cell-Based Cancer Immunotherapy.
    Zhu H; Lai YS; Li Y; Blum RH; Kaufman DS
    Stem Cells; 2018 Feb; 36(2):134-145. PubMed ID: 29235195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hematopoietic and nature killer cell development from human pluripotent stem cells.
    Ni Z; Knorr DA; Kaufman DS
    Methods Mol Biol; 2013; 1029():33-41. PubMed ID: 23756940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro generation of immune cells from pluripotent stem cells.
    Vandekerckhove B; Vanhee S; Van Coppernolle S; Snauwaert S; Velghe I; Taghon T; Leclercq G; Kerre T; Plum J
    Front Biosci (Landmark Ed); 2011 Jan; 16(4):1488-504. PubMed ID: 21196243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward clinical therapies using hematopoietic cells derived from human pluripotent stem cells.
    Kaufman DS
    Blood; 2009 Oct; 114(17):3513-23. PubMed ID: 19652198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in lymphocyte developmental potential between human embryonic stem cell and umbilical cord blood-derived hematopoietic progenitor cells.
    Martin CH; Woll PS; Ni Z; Zúñiga-Pflücker JC; Kaufman DS
    Blood; 2008 Oct; 112(7):2730-7. PubMed ID: 18621931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf" CAR T and CAR NK Cells.
    Morgan MA; Büning H; Sauer M; Schambach A
    Front Immunol; 2020; 11():1965. PubMed ID: 32903482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced Pluripotent Stem Cell (iPSC)-Derived Lymphocytes for Adoptive Cell Immunotherapy: Recent Advances and Challenges.
    Nianias A; Themeli M
    Curr Hematol Malig Rep; 2019 Aug; 14(4):261-268. PubMed ID: 31243643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development, expansion, and in vivo monitoring of human NK cells from human embryonic stem cells (hESCs) and and induced pluripotent stem cells (iPSCs).
    Bock AM; Knorr D; Kaufman DS
    J Vis Exp; 2013 Apr; (74):e50337. PubMed ID: 23644738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-clinical efficacy, safety and stable clinical cell processing of induced pluripotent stem cell-derived anti-glypican-3 chimeric antigen receptor-expressing natural killer/innate lymphoid cells.
    Ueda T; Kumagai A; Iriguchi S; Yasui Y; Miyasaka T; Nakagoshi K; Nakane K; Saito K; Takahashi M; Sasaki A; Yoshida S; Takasu N; Seno H; Uemura Y; Tamada K; Nakatsura T; Kaneko S
    Cancer Sci; 2020 May; 111(5):1478-1490. PubMed ID: 32133731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of chimeric receptor CD4ζ by natural killer cells derived from human pluripotent stem cells improves in vitro activity but does not enhance suppression of HIV infection in vivo.
    Ni Z; Knorr DA; Bendzick L; Allred J; Kaufman DS
    Stem Cells; 2014 Apr; 32(4):1021-31. PubMed ID: 24307574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adoptive Immunotherapy: A Human Pluripotent Stem Cell Perspective.
    Jin G; Chang Y; Harris JD; Bao X
    Cells Tissues Organs; 2023; 212(5):439-467. PubMed ID: 36599319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human pluripotent stem cells produce natural killer cells that mediate anti-HIV-1 activity by utilizing diverse cellular mechanisms.
    Ni Z; Knorr DA; Clouser CL; Hexum MK; Southern P; Mansky LM; Park IH; Kaufman DS
    J Virol; 2011 Jan; 85(1):43-50. PubMed ID: 20962093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered human embryonic stem cell-derived lymphocytes to study in vivo trafficking and immunotherapy.
    Knorr DA; Bock A; Brentjens RJ; Kaufman DS
    Stem Cells Dev; 2013 Jul; 22(13):1861-9. PubMed ID: 23421330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering hematopoietic grafts: purified allogeneic hematopoietic stem cells plus expanded CD8+ NK-T cells in the treatment of lymphoma.
    Verneris MR; Ito M; Baker J; Arshi A; Negrin RS; Shizuru JA
    Biol Blood Marrow Transplant; 2001; 7(10):532-42. PubMed ID: 11760085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.