BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 20801503)

  • 21. Controlling human corneal stromal stem cell contraction to mediate rapid cell and matrix organization of real architecture for 3-dimensional tissue equivalents.
    Mukhey D; Phillips JB; Daniels JT; Kureshi AK
    Acta Biomater; 2018 Feb; 67():229-237. PubMed ID: 29208552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigating a novel nanostructured fibrin-agarose biomaterial for human cornea tissue engineering: rheological properties.
    Ionescu AM; Alaminos M; de la Cruz Cardona J; de Dios García-López Durán J; González-Andrades M; Ghinea R; Campos A; Hita E; del Mar Pérez M
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1963-73. PubMed ID: 22098895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mimicking Form and Function of Native Small Diameter Vascular Conduits Using Mulberry and Non-mulberry Patterned Silk Films.
    Gupta P; Kumar M; Bhardwaj N; Kumar JP; Krishnamurthy CS; Nandi SK; Mandal BB
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):15874-88. PubMed ID: 27269821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of a silk fibroin-chitosan scaffold to construct a tissue-engineered corneal stroma.
    Guan L; Ge H; Tang X; Su S; Tian P; Xiao N; Zhang H; Zhang L; Liu P
    Cells Tissues Organs; 2013; 198(3):190-7. PubMed ID: 24247045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scaffold-free tissue engineering of functional corneal stromal tissue.
    Syed-Picard FN; Du Y; Hertsenberg AJ; Palchesko R; Funderburgh ML; Feinberg AW; Funderburgh JL
    J Tissue Eng Regen Med; 2018 Jan; 12(1):59-69. PubMed ID: 27863068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Poly (glycerol sebacate)-poly (ε-caprolactone) blend nanofibrous scaffold as intrinsic bio- and immunocompatible system for corneal repair.
    Salehi S; Czugala M; Stafiej P; Fathi M; Bahners T; Gutmann JS; Singer BB; Fuchsluger TA
    Acta Biomater; 2017 Mar; 50():370-380. PubMed ID: 28069498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micro- and Nanoscale Topographies on Silk Regulate Gene Expression of Human Corneal Epithelial Cells.
    Kang KB; Lawrence BD; Gao XR; Luo Y; Zhou Q; Liu A; Guaiquil VH; Rosenblatt MI
    Invest Ophthalmol Vis Sci; 2017 Dec; 58(14):6388-6398. PubMed ID: 29260198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cornea-Specific Human Adipose Stem Cell-Derived Extracellular Matrix for Corneal Stroma Tissue Engineering.
    Puistola P; Kethiri A; Nurminen A; Turkki J; Hopia K; Miettinen S; Mörö A; Skottman H
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):15761-15772. PubMed ID: 38513048
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro 3D corneal tissue model with epithelium, stroma, and innervation.
    Wang S; Ghezzi CE; Gomes R; Pollard RE; Funderburgh JL; Kaplan DL
    Biomaterials; 2017 Jan; 112():1-9. PubMed ID: 27741498
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs.
    Janani G; Nandi SK; Mandal BB
    Acta Biomater; 2018 Feb; 67():167-182. PubMed ID: 29223705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silk fiber reinforcement modulates in vitro chondrogenesis in 3D composite scaffolds.
    Singh YP; Adhikary M; Bhardwaj N; Bhunia BK; Mandal BB
    Biomed Mater; 2017 Jul; 12(4):045012. PubMed ID: 28737162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation of silk films in multipocket corneal stromal rabbit models.
    Ghezzi CE; Wang L; Behlau I; Rnjak-Kovacina J; Wang S; Goldstein MH; Liu J; Marchant JK; Rosenblatt MI; Kaplan DL
    J Appl Biomater Funct Mater; 2016 Jul; 14(3):e266-76. PubMed ID: 27230452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomimetic corneal stroma using electro-compacted collagen.
    Chen Z; Liu X; You J; Song Y; Tomaskovic-Crook E; Sutton G; Crook JM; Wallace GG
    Acta Biomater; 2020 Sep; 113():360-371. PubMed ID: 32652228
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold.
    Orash Mahmoud Salehi A; Nourbakhsh MS; Rafienia M; Baradaran-Rafii A; Heidari Keshel S
    Int J Biol Macromol; 2020 Oct; 161():377-388. PubMed ID: 32526297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clay enriched silk biomaterials for bone formation.
    Mieszawska AJ; Llamas JG; Vaiana CA; Kadakia MP; Naik RR; Kaplan DL
    Acta Biomater; 2011 Aug; 7(8):3036-41. PubMed ID: 21549864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds-a novel approach to corneal tissue engineering.
    Zhou H; Wang Z; Cao H; Hu H; Luo Z; Yang X; Cui M; Zhou L
    J Biomater Sci Polym Ed; 2019 Dec; 30(17):1604-1619. PubMed ID: 31438806
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patterned silk film scaffolds for aligned lamellar bone tissue engineering.
    Tien LW; Gil ES; Park SH; Mandal BB; Kaplan DL
    Macromol Biosci; 2012 Dec; 12(12):1671-9. PubMed ID: 23070941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing annulus fibrosus tissue formation in porous silk scaffolds.
    Chang G; Kim HJ; Vunjak-Novakovic G; Kaplan DL; Kandel R
    J Biomed Mater Res A; 2010 Jan; 92(1):43-51. PubMed ID: 19165797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Composition, structure and function of the corneal stroma.
    Espana EM; Birk DE
    Exp Eye Res; 2020 Sep; 198():108137. PubMed ID: 32663498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of surface modified glycerol/silk fibroin film for application to corneal endothelial cell regeneration.
    Song JE; Sim BR; Jeon YS; Kim HS; Shin EY; Carlomagno C; Khang G
    J Biomater Sci Polym Ed; 2019 Mar; 30(4):263-275. PubMed ID: 30324858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.