These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 20801708)

  • 1. Phytochrome: structural basis for its functions.
    Nagatani A
    Curr Opin Plant Biol; 2010 Oct; 13(5):565-70. PubMed ID: 20801708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytochrome three-dimensional structures and functions.
    Hughes J
    Biochem Soc Trans; 2010 Apr; 38(2):710-6. PubMed ID: 20298248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus.
    Matsushita T; Mochizuki N; Nagatani A
    Nature; 2003 Jul; 424(6948):571-4. PubMed ID: 12891362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial phytochromes: more than meets the light.
    Auldridge ME; Forest KT
    Crit Rev Biochem Mol Biol; 2011 Feb; 46(1):67-88. PubMed ID: 21250783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Crystal Structures of the N-terminal Photosensory Core Module of Agrobacterium Phytochrome Agp1 as Parallel and Anti-parallel Dimers.
    Nagano S; Scheerer P; Zubow K; Michael N; Inomata K; Lamparter T; Krauß N
    J Biol Chem; 2016 Sep; 291(39):20674-91. PubMed ID: 27466363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural analysis of Arabidopsis thaliana nucleoside diphosphate kinase-2 for phytochrome-mediated light signaling.
    Im YJ; Kim JI; Shen Y; Na Y; Han YJ; Kim SH; Song PS; Eom SH
    J Mol Biol; 2004 Oct; 343(3):659-70. PubMed ID: 15465053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome.
    Wagner JR; Brunzelle JS; Forest KT; Vierstra RD
    Nature; 2005 Nov; 438(7066):325-31. PubMed ID: 16292304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals.
    Chen M; Tao Y; Lim J; Shaw A; Chory J
    Curr Biol; 2005 Apr; 15(7):637-42. PubMed ID: 15823535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallization and preliminary X-ray crystallographic analysis of the N-terminal photosensory module of phytochrome Agp1, a biliverdin-binding photoreceptor from Agrobacterium tumefaciens.
    Scheerer P; Michael N; Park JH; Noack S; Förster C; Hammam MA; Inomata K; Choe HW; Lamparter T; Krauss N
    J Struct Biol; 2006 Jan; 153(1):97-102. PubMed ID: 16377207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic and photochemical characterization of the red-light sensitive photosensory module of Cph2 from Synechocystis PCC 6803.
    Anders K; von Stetten D; Mailliet J; Kiontke S; Sineshchekov VA; Hildebrandt P; Hughes J; Essen LO
    Photochem Photobiol; 2011; 87(1):160-73. PubMed ID: 21091956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signaling Mechanism of Phytochromes in Solution.
    Isaksson L; Gustavsson E; Persson C; Brath U; Vrhovac L; Karlsson G; Orekhov V; Westenhoff S
    Structure; 2021 Feb; 29(2):151-160.e3. PubMed ID: 32916102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the chromophore in the biological photoreceptor phytochrome: an approach using chemically synthesized tetrapyrroles.
    Bongards C; Gärtner W
    Acc Chem Res; 2010 Apr; 43(4):485-95. PubMed ID: 20055450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-dependent dimerisation in the N-terminal sensory module of cyanobacterial phytochrome 1.
    Strauss HM; Schmieder P; Hughes J
    FEBS Lett; 2005 Jul; 579(18):3970-4. PubMed ID: 16004995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytochrome signaling: solving the Gordian knot with microbial relatives.
    Vierstra RD; Zhang J
    Trends Plant Sci; 2011 Aug; 16(8):417-26. PubMed ID: 21719341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface topography of phytochrome A deduced from specific chemical modification with iodoacetamide.
    Lapko VN; Jiang XY; Smith DL; Song PS
    Biochemistry; 1998 Sep; 37(36):12526-35. PubMed ID: 9730825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-induced global structural changes in phytochrome A regulating photomorphogenesis in plants.
    Nakasako M; Iwata T; Inoue K; Tokutomi S
    FEBS J; 2005 Jan; 272(2):603-12. PubMed ID: 15654897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytochrome structure and photochemistry: recent advances toward a complete molecular picture.
    Ulijasz AT; Vierstra RD
    Curr Opin Plant Biol; 2011 Oct; 14(5):498-506. PubMed ID: 21733743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-Driven Domain Mechanics of a Minimal Phytochrome Photosensory Module Studied by EPR.
    Assafa TE; Anders K; Linne U; Essen LO; Bordignon E
    Structure; 2018 Nov; 26(11):1534-1545.e4. PubMed ID: 30244967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopy and a high-resolution crystal structure of Tyr263 mutants of cyanobacterial phytochrome Cph1.
    Mailliet J; Psakis G; Feilke K; Sineshchekov V; Essen LO; Hughes J
    J Mol Biol; 2011 Oct; 413(1):115-27. PubMed ID: 21888915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal amplification and transduction in phytochrome photosensors.
    Takala H; Björling A; Berntsson O; Lehtivuori H; Niebling S; Hoernke M; Kosheleva I; Henning R; Menzel A; Ihalainen JA; Westenhoff S
    Nature; 2014 May; 509(7499):245-248. PubMed ID: 24776794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.