BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20801745)

  • 1. Computational intelligent gait-phase detection system to identify pathological gait.
    Senanayake CM; Senanayake SM
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1173-9. PubMed ID: 20801745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational method for reliable gait event detection and abnormality detection for feedback in rehabilitation.
    Senanayake C; Senanayake SM
    Comput Methods Biomech Biomed Engin; 2011 Oct; 14(10):863-74. PubMed ID: 20924859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Walking pattern classification and walking distance estimation algorithms using gait phase information.
    Wang JS; Lin CW; Yang YT; Ho YJ
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2884-92. PubMed ID: 22893370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial Gait Phase Detection for control of a drop foot stimulator Inertial sensing for gait phase detection.
    Kotiadis D; Hermens HJ; Veltink PH
    Med Eng Phys; 2010 May; 32(4):287-97. PubMed ID: 20153237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of walking features from foot inertial sensing.
    Sabatini AM; Martelloni C; Scapellato S; Cavallo F
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a neuro-fuzzy network for gait event detection using electromyography in the child with cerebral palsy.
    Lauer RT; Smith BT; Betz RR
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1532-40. PubMed ID: 16189966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time gait event detection for paraplegic FES walking.
    Skelly MM; Chizeck HJ
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):59-68. PubMed ID: 11482364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretation of surface EMGs in children with cerebral palsy: An initial study using a fuzzy expert system.
    Schmidt-Rohlfing B; Bergamo F; Williams S; Erli HJ; Rau G; Niethard FU; Disselhorst-Klug C
    J Orthop Res; 2006 Mar; 24(3):438-47. PubMed ID: 16450406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time gait event detection using wearable sensors.
    Hanlon M; Anderson R
    Gait Posture; 2009 Nov; 30(4):523-7. PubMed ID: 19729307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry.
    Sant'anna A; Wickström N
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1180-7. PubMed ID: 20371410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foot contact event detection using kinematic data in cerebral palsy children and normal adults gait.
    Desailly E; Daniel Y; Sardain P; Lacouture P
    Gait Posture; 2009 Jan; 29(1):76-80. PubMed ID: 18676147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for extracting temporal parameters based on hidden Markov models in body sensor networks with inertial sensors.
    Guenterberg E; Yang AY; Ghasemzadeh H; Jafari R; Bajcsy R; Sastry SS
    IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):1019-30. PubMed ID: 19726268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating robustness of gait event detection based on machine learning and natural sensors.
    Hansen M; Haugland MK; Sinkjaer T
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):81-8. PubMed ID: 15068191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic detection of gait events using kinematic data.
    O'Connor CM; Thorpe SK; O'Malley MJ; Vaughan CL
    Gait Posture; 2007 Mar; 25(3):469-74. PubMed ID: 16876414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic gait stability index based on plantar pressures and fuzzy logic.
    Biswas A; Lemaire ED; Kofman J
    J Biomech; 2008; 41(7):1574-81. PubMed ID: 18395211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking clinical measurements and kinematic gait patterns of toe-walking using fuzzy decision trees.
    Armand S; Watelain E; Roux E; Mercier M; Lepoutre FX
    Gait Posture; 2007 Mar; 25(3):475-84. PubMed ID: 16837198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic recognition of gait patterns exhibiting patellofemoral pain syndrome using a support vector machine approach.
    Lai DT; Levinger P; Begg RK; Gilleard WL; Palaniswami M
    IEEE Trans Inf Technol Biomed; 2009 Sep; 13(5):810-7. PubMed ID: 19447723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Video imaging system for automated shaping and analysis of complex locomotory behavior.
    Publicover NG; Hayes LJ; Fernando Guerrero L; Hunter KW
    J Neurosci Methods; 2009 Aug; 182(1):34-42. PubMed ID: 19501618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Support vector machines for automated gait classification.
    Begg RK; Palaniswami M; Owen B
    IEEE Trans Biomed Eng; 2005 May; 52(5):828-38. PubMed ID: 15887532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of force-sensing resistors for gait event detection to trigger electrical stimulation to improve walking in the child with cerebral palsy.
    Smith BT; Coiro DJ; Finson R; Betz RR; McCarthy J
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):22-9. PubMed ID: 12173736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.