These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20801913)

  • 21. Partial correlation coefficient between distance matrices as a new indicator of protein-protein interactions.
    Sato T; Yamanishi Y; Horimoto K; Kanehisa M; Toh H
    Bioinformatics; 2006 Oct; 22(20):2488-92. PubMed ID: 16882650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recognition templates for predicting adenylate-binding sites in proteins.
    Zhao S; Morris GM; Olson AJ; Goodsell DS
    J Mol Biol; 2001 Dec; 314(5):1245-55. PubMed ID: 11743737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein interaction hotspot identification using sequence-based frequency-derived features.
    Nguyen QT; Fablet R; Pastor D
    IEEE Trans Biomed Eng; 2013 Nov; 60(11):2993-3002. PubMed ID: 21742567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of protein-protein interaction sites using support vector machines.
    Koike A; Takagi T
    Protein Eng Des Sel; 2004 Feb; 17(2):165-73. PubMed ID: 15047913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Domain-based small molecule binding site annotation.
    Snyder KA; Feldman HJ; Dumontier M; Salama JJ; Hogue CW
    BMC Bioinformatics; 2006 Mar; 7():152. PubMed ID: 16545112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Searching for hypothetical proteins: theory and practice based upon original data and literature.
    Lubec G; Afjehi-Sadat L; Yang JW; John JP
    Prog Neurobiol; 2005; 77(1-2):90-127. PubMed ID: 16271823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global sequence properties for superfamily prediction: a machine learning approach.
    Dobson RJ; Munroe PB; Caulfield MJ; Saqi MA
    J Integr Bioinform; 2009 Aug; 6(1):109. PubMed ID: 20134076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-fast FFT protein docking on graphics processors.
    Ritchie DW; Venkatraman V
    Bioinformatics; 2010 Oct; 26(19):2398-405. PubMed ID: 20685958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational analysis of human protein interaction networks.
    Ramírez F; Schlicker A; Assenov Y; Lengauer T; Albrecht M
    Proteomics; 2007 Aug; 7(15):2541-52. PubMed ID: 17647236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction between intrinsically disordered proteins frequently occurs in a human protein-protein interaction network.
    Shimizu K; Toh H
    J Mol Biol; 2009 Oct; 392(5):1253-65. PubMed ID: 19660471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel method for prediction of protein interaction sites based on integrated RBF neural networks.
    Chen Y; Xu J; Yang B; Zhao Y; He W
    Comput Biol Med; 2012 Apr; 42(4):402-7. PubMed ID: 22226645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting protein function from sequence and structural data.
    Watson JD; Laskowski RA; Thornton JM
    Curr Opin Struct Biol; 2005 Jun; 15(3):275-84. PubMed ID: 15963890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein-protein interaction extraction by leveraging multiple kernels and parsers.
    Miwa M; Saetre R; Miyao Y; Tsujii J
    Int J Med Inform; 2009 Dec; 78(12):e39-46. PubMed ID: 19501018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Text mining and visualisation of Protein-Protein Interactions.
    Tsai FS
    Int J Comput Biol Drug Des; 2011; 4(3):239-44. PubMed ID: 21778557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feature-based classification of native and non-native protein-protein interactions: Comparing supervised and semi-supervised learning approaches.
    Zhao N; Pang B; Shyu CR; Korkin D
    Proteomics; 2011 Nov; 11(22):4321-30. PubMed ID: 22002942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding protein-protein interactions using local structural features.
    Planas-Iglesias J; Bonet J; García-García J; Marín-López MA; Feliu E; Oliva B
    J Mol Biol; 2013 Apr; 425(7):1210-24. PubMed ID: 23353828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using coevolution to predict protein-protein interactions.
    Clark GW; Dar VU; Bezginov A; Yang JM; Charlebois RL; Tillier ER
    Methods Mol Biol; 2011; 781():237-56. PubMed ID: 21877284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of protein binding surfaces using surface triplet propensities.
    Mehio W; Kemp GJ; Taylor P; Walkinshaw MD
    Bioinformatics; 2010 Oct; 26(20):2549-55. PubMed ID: 20819959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ranking support vector machine for multiple kernels output combination in protein-protein interaction extraction from biomedical literature.
    Yang Z; Lin Y; Wu J; Tang N; Lin H; Li Y
    Proteomics; 2011 Oct; 11(19):3811-7. PubMed ID: 21834129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.