These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 20802074)

  • 21. Comparative Genomics and Pan-Genomics of the Myxococcaceae, including a Description of Five Novel Species: Myxococcus eversor sp. nov., Myxococcus llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochensis sp. nov., Myxococcus vastator sp. nov., Pyxidicoccus caerfyrddinensis sp. nov., and Pyxidicoccus trucidator sp. nov.
    Chambers J; Sparks N; Sydney N; Livingstone PG; Cookson AR; Whitworth DE
    Genome Biol Evol; 2020 Dec; 12(12):2289-2302. PubMed ID: 33022031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ecological variables affecting predatory success in Myxococcus xanthus.
    Hillesland KL; Lenski RE; Velicer GJ
    Microb Ecol; 2007 May; 53(4):571-8. PubMed ID: 17410395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myxobacteria Are Able to Prey Broadly upon Clinically-Relevant Pathogens, Exhibiting a Prey Range Which Cannot Be Explained by Phylogeny.
    Livingstone PG; Morphew RM; Whitworth DE
    Front Microbiol; 2017; 8():1593. PubMed ID: 28878752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Killer prey: Ecology reverses bacterial predation.
    Vasse M; Fiegna F; Kriesel B; Velicer GJ
    PLoS Biol; 2024 Jan; 22(1):e3002454. PubMed ID: 38261596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. To invade or not to invade: two approaches to a prokaryotic predatory life cycle.
    Chanyi RM; Ward C; Pechey A; Koval SF
    Can J Microbiol; 2013 Apr; 59(4):273-9. PubMed ID: 23586752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predation of oomycetes by myxobacteria via a specialized CAZyme system arising from adaptive evolution.
    Zhang L; Dong C; Wang J; Liu M; Wang J; Hu J; Liu L; Liu X; Xia C; Zhong L; Zhao Y; Ye X; Huang Y; Fan J; Cao H; Wang J; Li Y; Wall D; Li Z; Cui Z
    ISME J; 2023 Jul; 17(7):1089-1103. PubMed ID: 37156836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deciphering the hunting strategy of a bacterial wolfpack.
    Berleman JE; Kirby JR
    FEMS Microbiol Rev; 2009 Sep; 33(5):942-57. PubMed ID: 19519767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pedogenesis shapes predator-prey relationships within soil microbiomes.
    Xiong W; Delgado-Baquerizo M; Shen Q; Geisen S
    Sci Total Environ; 2022 Jul; 828():154405. PubMed ID: 35276178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting prey population dynamics from kill rate, predation rate and predator-prey ratios in three wolf-ungulate systems.
    Vucetich JA; Hebblewhite M; Smith DW; Peterson RO
    J Anim Ecol; 2011 Nov; 80(6):1236-45. PubMed ID: 21569029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptation of salt-tolerant Myxococcus strains and their motility systems to the ocean conditions.
    Wang B; Hu W; Liu H; Zhang CY; Zhao JY; Jiang DM; Wu ZH; Li YZ
    Microb Ecol; 2007 Jul; 54(1):43-51. PubMed ID: 17186141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential response to prey quorum signals indicates predatory specialization of myxobacteria and ability to predate Pseudomonas aeruginosa.
    Akbar S; Phillips KE; Misra SK; Sharp JS; Stevens DC
    Environ Microbiol; 2022 Mar; 24(3):1263-1278. PubMed ID: 34674390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome Analysis, Metabolic Potential, and Predatory Capabilities of Herpetosiphon llansteffanense sp. nov.
    Livingstone PG; Morphew RM; Cookson AR; Whitworth DE
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30194103
    [No Abstract]   [Full Text] [Related]  

  • 33. Transcriptomic response of
    Soto MJ; Pérez J; Muñoz-Dorado J; Contreras-Moreno FJ; Moraleda-Muñoz A
    Front Microbiol; 2023; 14():1213659. PubMed ID: 37405170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial Heterogeneity, Indirect Interactions, and the Coexistence of Prey Species.
    Holt RD
    Am Nat; 1984 Sep.; 124(3):377-406. PubMed ID: 29519131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Behavioral Interactions between Bacterivorous Nematodes and Predatory Bacteria in a Synthetic Community.
    Mayrhofer N; Velicer GJ; Schaal KA; Vasse M
    Microorganisms; 2021 Jun; 9(7):. PubMed ID: 34201688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Predation Strategy of
    Thiery S; Kaimer C
    Front Microbiol; 2020; 11():2. PubMed ID: 32010119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutations affecting predation ability of the soil bacterium Myxococcus xanthus.
    Pham VD; Shebelut CW; Diodati ME; Bull CT; Singer M
    Microbiology (Reading); 2005 Jun; 151(Pt 6):1865-1874. PubMed ID: 15941994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper and Melanin Play a Role in
    Contreras-Moreno FJ; Muñoz-Dorado J; García-Tomsig NI; Martínez-Navajas G; Pérez J; Moraleda-Muñoz A
    Front Microbiol; 2020; 11():94. PubMed ID: 32117124
    [No Abstract]   [Full Text] [Related]  

  • 39. Stronger predation intensity and impact on prey communities in the tropics.
    Freestone AL; Torchin ME; Jurgens LJ; Bonfim M; López DP; Repetto MF; Schlöder C; Sewall BJ; Ruiz GM
    Ecology; 2021 Aug; 102(8):e03428. PubMed ID: 34105781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Implications of shared predation for space use in two sympatric leporids.
    Weterings MJA; Ewert SP; Peereboom JN; Kuipers HJ; Kuijper DPJ; Prins HHT; Jansen PA; van Langevelde F; van Wieren SE
    Ecol Evol; 2019 Mar; 9(6):3457-3469. PubMed ID: 30962905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.