These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 20802120)

  • 1. Innate olfactory preferences in dung beetles.
    Dormont L; Jay-Robert P; Bessière JM; Rapior S; Lumaret JP
    J Exp Biol; 2010 Sep; 213(Pt 18):3177-86. PubMed ID: 20802120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Succession of Dung-Inhabiting Beetles and Flies Reflects the Succession of Dung-Emitted Volatile Compounds.
    Sladecek FXJ; Dötterl S; Schäffler I; Segar ST; Konvicka M
    J Chem Ecol; 2021 May; 47(4-5):433-443. PubMed ID: 33830431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Links Between Feeding Preferences and Electroantennogram Response Profiles in Dung Beetles: The Importance of Dung Odor Bouquets.
    Urrutia MA; Cortez V; Verdú JR
    J Chem Ecol; 2022 Oct; 48(9-10):690-703. PubMed ID: 36083414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the Activity of Coprophagous Insects on Greenhouse Gas Emissions from Cattle Dung Pats and Changes in Amounts of Nitrogen, Carbon, and Energy.
    Iwasa M; Moki Y; Takahashi J
    Environ Entomol; 2015 Feb; 44(1):106-13. PubMed ID: 26308812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting Volatilomes of Livestock Dung Drive Preference of the Dung Beetle
    Perera NN; Weston PA; Barrow RA; Weston LA; Gurr GM
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Host Habitat Volatiles Enhance the Olfactory Response of the Larval Parasitoid Holepyris sylvanidis to Specifically Host-Associated Cues.
    Fürstenau B; Adler C; Schulz H; Hilker M
    Chem Senses; 2016 Sep; 41(7):611-21. PubMed ID: 27261526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tropical rain forest fragmentation, howler monkeys (Alouatta palliata), and dung beetles at Los Tuxtlas, Mexico.
    Estrada A; Anzures D A; Coates-Estrada R
    Am J Primatol; 1999; 48(4):253-62. PubMed ID: 10402034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attractiveness of native mammal's feces of different trophic guilds to dung beetles (Coleoptera: Scarabaeinae).
    Bogoni JA; Hernández MI
    J Insect Sci; 2014; 14():. PubMed ID: 25528749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing sika deer population density may change resource use by larval dung beetles.
    Yama H; Naganuma T; Tochigi K; Trentin BE; Nakashita R; Inagaki A; Koike S
    PLoS One; 2019; 14(12):e0226078. PubMed ID: 31805107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of dung beetle feeding mechanisms in limiting the suitability of species as hosts for the nematode Spirocerca lupi.
    du Toit CA; Holter P; Lutermann H; Scholtz CH
    Med Vet Entomol; 2012 Dec; 26(4):455-7. PubMed ID: 22712430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using dung beetles to evaluate the effects of urbanization on Atlantic Forest biodiversity.
    Korasaki V; Lopes J; Gardner Brown G; Louzada J
    Insect Sci; 2013 Jun; 20(3):393-406. PubMed ID: 23955891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of dung beetle (Coleoptera: Scarabaeidae) attraction to native and exotic mammal dung.
    Whipple SD; Hoback WW
    Environ Entomol; 2012 Apr; 41(2):238-44. PubMed ID: 22506995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenology, Distribution, and Diversity of Dung Beetles (Coleoptera: Scarabaeidae) in North Florida's Pastures and Forests.
    Conover D; Dubeux J; Martini X
    Environ Entomol; 2019 Aug; 48(4):847-855. PubMed ID: 31188428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host finding and acceptance preference of the yellowmargined leaf beetle, Microtheca ochroloma (Coleoptera: Chrysomelidae), on cruciferous crops.
    Balusu RR; Fadamiro HY
    Environ Entomol; 2011 Dec; 40(6):1471-7. PubMed ID: 22217763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adult beetles compensate for poor larval food conditions.
    Müller T; Müller C
    J Insect Physiol; 2016 May; 88():24-32. PubMed ID: 26906247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The negative effects of the residues of ivermectin in cattle dung using a sustained-release bolus on Aphodius constans (Duft.) (Coleoptera: Aphodiidae).
    Errouissi F; Alvinerie M; Galtier P; Kerboeuf D; Lumaret JP
    Vet Res; 2001; 32(5):421-7. PubMed ID: 11592612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A field test of the effect of spiked ivermectin concentrations on the biodiversity of coprophagous dung insects in Switzerland.
    Jochmann R; Lipkow E; Blanckenhorn WU
    Environ Toxicol Chem; 2016 Aug; 35(8):1947-52. PubMed ID: 26013817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying immediate and delayed effects of anthelmintic exposure on ecosystem functioning supported by a common dung beetle species.
    Manning P; Beynon SA; Lewis OT
    PLoS One; 2017; 12(8):e0182730. PubMed ID: 28800623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sheep in wolf's clothing: do carrion and dung odours of flowers not only attract pollinators but also deter herbivores?
    Lev-Yadun S; Ne'eman G; Shanas U
    Bioessays; 2009 Jan; 31(1):84-8. PubMed ID: 19154006
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.