These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 20802708)

  • 21. Degree and Direction of Polarization of Multiple Scattered Light. 2: Earth's Atmosphere with Aerosols.
    Plass GN; Kattawar GW
    Appl Opt; 1972 Dec; 11(12):2866-79. PubMed ID: 20119418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time of flight lidar measurements as an ocean probe.
    Kattawar GW; Plass GN
    Appl Opt; 1972 Mar; 11(3):662-6. PubMed ID: 20111564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of the multiple scattering of electrons in Monte Carlo simulation of LINACS.
    Vilches M; García-Pareja S; Guerrero R; Anguiano M; Lallena AM
    Radiother Oncol; 2008 Jan; 86(1):104-8. PubMed ID: 18086502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light transport in tissue: Accurate expressions for one-dimensional fluence rate and escape function based upon monte carlo simulation.
    Gardner CM; Jacques SL; Welch AJ
    Lasers Surg Med; 1996; 18(2):129-38. PubMed ID: 8833281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Study on optical energy transmission in biotic tissues by Monte Carlo method].
    Ren X; Wei S; Yang X; Gao D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):652-7. PubMed ID: 20649038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients.
    Kim A; Roy M; Dadani F; Wilson BC
    Opt Express; 2010 Mar; 18(6):5580-94. PubMed ID: 20389574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory.
    Wang LV; Jacques SL
    Comput Methods Programs Biomed; 2000 Mar; 61(3):163-70. PubMed ID: 10710179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. II. Quantitative examinations of the steady-state theory.
    Zhang A; Xu G; Daluwatte C; Yao G; Bunting CF; Pogue BW; Piao D
    J Opt Soc Am A Opt Image Sci Vis; 2011 Feb; 28(2):66-75. PubMed ID: 21293512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MOCRA: a Monte Carlo code for the simulation of radiative transfer in the atmosphere.
    Premuda M; Palazzi E; Ravegnani F; Bortoli D; Masieri S; Giovanelli G
    Opt Express; 2012 Mar; 20(7):7973-93. PubMed ID: 22453470
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simple algorithm for the measurement of absorption coefficients of a two-layered medium by spatially resolved and time-resolved reflectance.
    Shimada M; Hoshi Y; Yamada Y
    Appl Opt; 2005 Dec; 44(35):7554-63. PubMed ID: 16363780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative Raman spectroscopy in turbid media.
    Reble C; Gersonde I; Andree S; Eichler HJ; Helfmann J
    J Biomed Opt; 2010; 15(3):037016. PubMed ID: 20615045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vector Monte Carlo simulations on atmospheric scattering of polarization qubits.
    Li M; Lu P; Yu Z; Yan L; Chen Z; Yang C; Luo X
    J Opt Soc Am A Opt Image Sci Vis; 2013 Mar; 30(3):448-54. PubMed ID: 23456120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simple inexpensive method of measuring the temporal spreading of a light pulse propagating in a turbid medium.
    Zaccanti G; Bruscaglioni P; Dami M
    Appl Opt; 1990 Sep; 29(27):3938-44. PubMed ID: 20577317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study.
    Zonios G; Dimou A
    Biomed Opt Express; 2011 Dec; 2(12):3284-94. PubMed ID: 22162819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crossed source-detector geometry for a novel spray diagnostic: Monte Carlo simulation and analytical results.
    Berrocal E; Churmakov DY; Romanov VP; Jermy MC; Meglinski IV
    Appl Opt; 2005 May; 44(13):2519-29. PubMed ID: 15881059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Virtual-source diffusion approximation for enhanced near-field modeling of photon-migration in low-albedo medium.
    Jia M; Chen X; Zhao H; Cui S; Liu M; Liu L; Gao F
    Opt Express; 2015 Jan; 23(2):1337-52. PubMed ID: 25835892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monte Carlo study of light propagation in optically thick media: point source case.
    Zaccanti G
    Appl Opt; 1991 May; 30(15):2031-41. PubMed ID: 20700172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lookup table-based sampling of the phase function for Monte Carlo simulations of light propagation in turbid media.
    Naglič P; Pernuš F; Likar B; Bürmen M
    Biomed Opt Express; 2017 Mar; 8(3):1895-1910. PubMed ID: 28663872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scaling relationships for theories of anisotropic random walks applied to tissue optics.
    Gandjbakhche AH; Nossal R; Bonner RF
    Appl Opt; 1993 Feb; 32(4):504-16. PubMed ID: 20802718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths.
    Fried D; Glena RE; Featherstone JD; Seka W
    Appl Opt; 1995 Mar; 34(7):1278-85. PubMed ID: 21037659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.