These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 20802769)
1. Intense backward Raman lasers in CH(4) and H(2). Sentrayan K; Michael A; Kushawaha V Appl Opt; 1993 Feb; 32(6):930-4. PubMed ID: 20802769 [TBL] [Abstract][Full Text] [Related]
2. Efficient Raman laser system using stimulated Brillouin scattering with different confocal parameters for CH(4). Park YH; Lee DW; Kong HJ; Kim Y Appl Opt; 2007 Aug; 46(22):5516-21. PubMed ID: 17676168 [TBL] [Abstract][Full Text] [Related]
3. Development of the 2.8 microm emission doubly shifted Raman laser using stimulated Brillouin scattering in a cascaded cavity. Park YH; Lee DW; Kong HJ; Kim YS Appl Opt; 2008 Jul; 47(20):3646-50. PubMed ID: 18617981 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of Nd:YAG-pumped Raman shifter as a broad-spectrum light source. Jarvis GB; Mathew S; Kenny JE Appl Opt; 1994 Jul; 33(21):4938-46. PubMed ID: 20935870 [TBL] [Abstract][Full Text] [Related]
9. Efficient Raman conversion through backward stimulated Brillouin scattering. Kong HJ; Jeon YG; Kim JK Appl Opt; 1995 Feb; 34(6):993-5. PubMed ID: 21037623 [TBL] [Abstract][Full Text] [Related]
10. Experimental investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers. de Schoulepnikoff L; Mitev V; Simeonov V; Calpini B; van den Bergh H Appl Opt; 1997 Jul; 36(21):5026-43. PubMed ID: 18259311 [TBL] [Abstract][Full Text] [Related]
11. [Study on the nonlinear Raman lidar monitoring the CO2 gas]. Zhao YF; Zhang YC; Hong GL; Liu XQ; Cao KF; Fang X; Tao ZM; Yu SH; Qu KF; Shao SS Guang Pu Xue Yu Guang Pu Fen Xi; 2006 May; 26(5):794-7. PubMed ID: 16883838 [TBL] [Abstract][Full Text] [Related]
12. Methane detection with a narrow-band source at 3.4 µm based on a Nd:YAG pump laser and a combination of stimulated Raman scattering and difference frequency mixing. Lancaster DG; Dawes JM Appl Opt; 1996 Jul; 35(21):4041-5. PubMed ID: 21102808 [TBL] [Abstract][Full Text] [Related]
13. Diode-pumped Q-switched Nd:YAG-KGW Raman laser operating in two-color modulation. Wang W; Gong M; Zhao Q; Hu Z; Fu C Opt Express; 2010 Feb; 18(3):2655-61. PubMed ID: 20174095 [TBL] [Abstract][Full Text] [Related]
15. Raman Frequency Shifting in a CH(4):H(2):Ar mixture pumped by the fourth harmonic of a Nd:YAG Laser. Simeonov V; Mitev V; van den Bergh H; Calpini B Appl Opt; 1998 Oct; 37(30):7112-5. PubMed ID: 18301534 [TBL] [Abstract][Full Text] [Related]
16. Raman shifting of Nd:YAG laser radiation in methane:an efficient method to generate 3-microm radiation for medical uses. Guntermann C; Gathen VS; Döbele HF Appl Opt; 1989 Jan; 28(1):135-8. PubMed ID: 20548439 [TBL] [Abstract][Full Text] [Related]
17. Efficient 1.8 μm KTiOPO4 optical parametric oscillator pumped within an Nd:YAG/SrWO4 Raman laser. Bai F; Wang Q; Liu Z; Zhang X; Sun W; Wan X; Li P; Jin G; Zhang H Opt Lett; 2011 Mar; 36(6):813-5. PubMed ID: 21403693 [TBL] [Abstract][Full Text] [Related]
18. A continuous wave SrMoO4 Raman laser. Yu H; Li Z; Lee AJ; Li J; Zhang H; Wang J; Pask HM; Piper JA; Jiang M Opt Lett; 2011 Feb; 36(4):579-81. PubMed ID: 21326462 [TBL] [Abstract][Full Text] [Related]