These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20802816)

  • 21. Visual cortex neurons phase-lock selectively to subsets of LFP oscillations.
    Swindale NV; Spacek MA
    J Neurophysiol; 2019 Jun; 121(6):2364-2378. PubMed ID: 30995166
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid temporal modulation of synchrony by competition in cortical interneuron networks.
    Tiesinga PH; Sejnowski TJ
    Neural Comput; 2004 Feb; 16(2):251-75. PubMed ID: 15006096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase shifts in high-beta- and low-gamma-band local field potentials predict the focus of visual spatial attention.
    Mock VL; Luke KL; Hembrook-Short JR; Briggs F
    J Neurophysiol; 2019 Mar; 121(3):799-822. PubMed ID: 30540498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synchrony between orientation-selective neurons is modulated during adaptation-induced plasticity in cat visual cortex.
    Ghisovan N; Nemri A; Shumikhina S; Molotchnikoff S
    BMC Neurosci; 2008 Jul; 9():60. PubMed ID: 18598368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial consistency of neural firing regulates long-range local field potential synchronization: a computational study.
    Sato N
    Neural Netw; 2015 Feb; 62():52-61. PubMed ID: 25096267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in Local Network Activity Approximated by Reverse Spike-Triggered Local Field Potentials Predict the Focus of Attention.
    Sharafeldin A; Mock VL; Meisenhelter S; Hembrook-Short JR; Briggs F
    Cereb Cortex Commun; 2020; 1(1):tgaa014. PubMed ID: 32864614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unbiased and robust quantification of synchronization between spikes and local field potential.
    Li Z; Cui D; Li X
    J Neurosci Methods; 2016 Aug; 269():33-8. PubMed ID: 27180930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial patterns of spontaneous local field activity in the monkey visual cortex.
    Leopold DA; Logothetis NK
    Rev Neurosci; 2003; 14(1-2):195-205. PubMed ID: 12929926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased neuronal synchrony prepares mesial temporal networks for seizures of neocortical origin.
    Misra A; Long X; Sperling MR; Sharan AD; Moxon KA
    Epilepsia; 2018 Mar; 59(3):636-649. PubMed ID: 29442363
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synchrony between single-unit activity and local field potentials in relation to periodicity coding in primary auditory cortex.
    Eggermont JJ; Smith GM
    J Neurophysiol; 1995 Jan; 73(1):227-45. PubMed ID: 7714568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Attentional modulation of visual responses by flexible input gain.
    Ghose GM
    J Neurophysiol; 2009 Apr; 101(4):2089-106. PubMed ID: 19193776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Odorant modulation of neuronal activity and local field potential in sensory-deprived olfactory bulb.
    Aylwin ML; Aguilar GA; Flores FJ; Maldonado PE
    Neuroscience; 2009 Sep; 162(4):1265-78. PubMed ID: 19481588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attentional modulation of MT neurons with single or multiple stimuli in their receptive fields.
    Lee J; Maunsell JH
    J Neurosci; 2010 Feb; 30(8):3058-66. PubMed ID: 20181602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Attentional recruitment of inter-areal recurrent networks for selective gain control.
    Hahnloser RH; Douglas RJ; Hepp K
    Neural Comput; 2002 Jul; 14(7):1669-89. PubMed ID: 12079551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contextual modulation of synchronization to random dots in the cat visual cortex.
    Shumikhina S; Guay J; Duret F; Molotchnikoff S
    Exp Brain Res; 2004 Sep; 158(2):223-32. PubMed ID: 15118794
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase-locking of bursting neuronal firing to dominant LFP frequency components.
    Constantinou M; Elijah DH; Squirrell D; Gigg J; Montemurro MA
    Biosystems; 2015 Oct; 136():73-9. PubMed ID: 26305338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synchrony: a neural correlate of somatosensory attention.
    Roy A; Steinmetz PN; Hsiao SS; Johnson KO; Niebur E
    J Neurophysiol; 2007 Sep; 98(3):1645-61. PubMed ID: 17596415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Attention Selectively Gates Afferent Signal Transmission to Area V4.
    Grothe I; Rotermund D; Neitzel SD; Mandon S; Ernst UA; Kreiter AK; Pawelzik KR
    J Neurosci; 2018 Apr; 38(14):3441-3452. PubMed ID: 29618546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decoding of Attentional State Using High-Frequency Local Field Potential Is As Accurate As Using Spikes.
    Prakash SS; Das A; Kanth ST; Mayo JP; Ray S
    Cereb Cortex; 2021 Jul; 31(9):4314-4328. PubMed ID: 33866366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Saccade-related modulations of neuronal excitability support synchrony of visually elicited spikes.
    Ito J; Maldonado P; Singer W; GrĂ¼n S
    Cereb Cortex; 2011 Nov; 21(11):2482-97. PubMed ID: 21459839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.