These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20802859)

  • 1. STDP in Oscillatory Recurrent Networks: Theoretical Conditions for Desynchronization and Applications to Deep Brain Stimulation.
    Pfister JP; Tass PA
    Front Comput Neurosci; 2010; 4():. PubMed ID: 20802859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic reorganization of synchronized neuronal networks with synaptic weight and structural plasticity.
    Chauhan K; Neiman AB; Tass PA
    PLoS Comput Biol; 2024 Jul; 20(7):e1012261. PubMed ID: 38980898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of abnormal synchronization in neurological disorders.
    Popovych OV; Tass PA
    Front Neurol; 2014; 5():268. PubMed ID: 25566174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-Lasting Desynchronization Effects of Coordinated Reset Stimulation Improved by Random Jitters.
    Khaledi-Nasab A; Kromer JA; Tass PA
    Front Physiol; 2021; 12():719680. PubMed ID: 34630142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of phase oscillator networks with synaptic weight and structural plasticity.
    Chauhan K; Khaledi-Nasab A; Neiman AB; Tass PA
    Sci Rep; 2022 Sep; 12(1):15003. PubMed ID: 36056151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated dataset on coordinated reset stimulation of homogeneous and inhomogeneous networks of excitatory leaky integrate-and-fire neurons with spike-timing-dependent plasticity.
    Kromer JA; Tass PA
    Data Brief; 2024 Jun; 54():110345. PubMed ID: 38586130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling Synchronization of Spiking Neuronal Networks by Harnessing Synaptic Plasticity.
    Schmalz J; Kumar G
    Front Comput Neurosci; 2019; 13():61. PubMed ID: 31551743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated reset stimulation of plastic neural networks with spatially dependent synaptic connections.
    Kromer JA; Tass PA
    Front Netw Physiol; 2024; 4():1351815. PubMed ID: 38863734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term anti-kindling effects of desynchronizing brain stimulation: a theoretical study.
    Tass PA; Majtanik M
    Biol Cybern; 2006 Jan; 94(1):58-66. PubMed ID: 16284784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does spike-timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony?
    Knoblauch A; Hauser F; Gewaltig MO; Körner E; Palm G
    Front Comput Neurosci; 2012; 6():55. PubMed ID: 22936909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delay-dependent transitions of phase synchronization and coupling symmetry between neurons shaped by spike-timing-dependent plasticity.
    Madadi Asl M; Ramezani Akbarabadi S
    Cogn Neurodyn; 2023 Apr; 17(2):523-536. PubMed ID: 37007192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spike-Timing Dependent Plasticity Effect on the Temporal Patterning of Neural Synchronization.
    Zirkle J; Rubchinsky LL
    Front Comput Neurosci; 2020; 14():52. PubMed ID: 32595464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronization in STDP-driven memristive neural networks with time-varying topology.
    Yamakou ME; Desroches M; Rodrigues S
    J Biol Phys; 2023 Dec; 49(4):483-507. PubMed ID: 37656327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic spike synchronization in a small-world neural network with spike-timing-dependent plasticity.
    Kim SY; Lim W
    Neural Netw; 2018 Jan; 97():92-106. PubMed ID: 29096205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing Deep Brain Stimulation effects in computationally efficient neural network models.
    Latteri A; Arena P; Mazzone P
    Nonlinear Biomed Phys; 2011 Apr; 5(1):2. PubMed ID: 21496222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Lasting Desynchronization of Plastic Neural Networks by Random Reset Stimulation.
    Khaledi-Nasab A; Kromer JA; Tass PA
    Front Physiol; 2020; 11():622620. PubMed ID: 33613303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconciling the STDP and BCM models of synaptic plasticity in a spiking recurrent neural network.
    Bush D; Philippides A; Husbands P; O'Shea M
    Neural Comput; 2010 Aug; 22(8):2059-85. PubMed ID: 20438333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STDP-Driven Rewiring in Spiking Neural Networks under Stimulus-Induced and Spontaneous Activity.
    Lobov SA; Berdnikova ES; Zharinov AI; Kurganov DP; Kazantsev VB
    Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of inhibitory spike-timing-dependent plasticity on fast sparsely synchronized rhythms in a small-world neuronal network.
    Kim SY; Lim W
    Neural Netw; 2018 Oct; 106():50-66. PubMed ID: 30025272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.