BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 20803247)

  • 1. Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills.
    Kim M; Day DF
    J Ind Microbiol Biotechnol; 2011 Jul; 38(7):803-7. PubMed ID: 20803247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotypic variations in non-structural carbohydrate and cell-wall components of the stem in rice, sorghum, and sugar vane.
    Arai-Sanoh Y; Ida M; Zhao R; Yoshinaga S; Takai T; Ishimaru T; Maeda H; Nishitani K; Terashima Y; Gau M; Kato N; Matsuoka M; Kondo M
    Biosci Biotechnol Biochem; 2011; 75(6):1104-12. PubMed ID: 21670528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse.
    Li M; Feng S; Wu L; Li Y; Fan C; Zhang R; Zou W; Tu Y; Jing HC; Li S; Peng L
    Bioresour Technol; 2014 Sep; 167():14-23. PubMed ID: 24968107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioenergy production from sweet sorghum stalks via a biorefinery perspective.
    Nozari B; Mirmohamadsadeghi S; Karimi K
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3425-3438. PubMed ID: 29459999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol.
    Krishnan C; Sousa Lda C; Jin M; Chang L; Dale BE; Balan V
    Biotechnol Bioeng; 2010 Oct; 107(3):441-50. PubMed ID: 20521302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation.
    Maeda RN; Barcelos CA; Santa Anna LM; Pereira N
    J Biotechnol; 2013 Jan; 163(1):38-44. PubMed ID: 23123260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and physicochemical characteristics of starch from sugar cane and sweet sorghum stalks.
    Alves FV; Polesi LF; Aguiar CL; Sarmento SB
    Carbohydr Polym; 2014 Oct; 111():592-7. PubMed ID: 25037392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentation of sweet sorghum derived sugars to butyric acid at high titer and productivity by a moderate thermophile Clostridium thermobutyricum at 50°C.
    Wang L; Ou MS; Nieves I; Erickson JE; Vermerris W; Ingram LO; Shanmugam KT
    Bioresour Technol; 2015 Dec; 198():533-9. PubMed ID: 26432057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biorefinery of sweet sorghum stem.
    Yu J; Zhang T; Zhong J; Zhang X; Tan T
    Biotechnol Adv; 2012; 30(4):811-6. PubMed ID: 22306167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse.
    Sipos B; Réczey J; Somorai Z; Kádár Z; Dienes D; Réczey K
    Appl Biochem Biotechnol; 2009 May; 153(1-3):151-62. PubMed ID: 19015818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane.
    Aita GA; Salvi DA; Walker MS
    Bioresour Technol; 2011 Mar; 102(6):4444-8. PubMed ID: 21247758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermentation of liquefacted hydrothermally pretreated sweet sorghum bagasse to ethanol at high-solids content.
    Matsakas L; Christakopoulos P
    Bioresour Technol; 2013 Jan; 127():202-8. PubMed ID: 23131642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic digestion of alkaline-sulfite pretreated sugar cane bagasse and its correlation with the chemical and structural changes occurring during the pretreatment step.
    Mendes FM; Laurito DF; Bazzeggio M; Ferraz A; Milagres AM
    Biotechnol Prog; 2013; 29(4):890-5. PubMed ID: 23666781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seed train development for the fermentation of bagasse from sweet sorghum and sugarcane using a simplified fermentation process.
    Geddes CC; Mullinnix MT; Nieves IU; Hoffman RW; Sagues WJ; York SW; Shanmugam KT; Erickson JE; Vermerris WE; Ingram LO
    Bioresour Technol; 2013 Jan; 128():716-24. PubMed ID: 23375156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China.
    Gnansounou E; Dauriat A; Wyman CE
    Bioresour Technol; 2005 Jun; 96(9):985-1002. PubMed ID: 15668196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of various storage conditions on enzymatic activity, biomass components and conversion to ethanol yields from sorghum biomass used as a bioenergy crop.
    Rigdon AR; Jumpponen A; Vadlani PV; Maier DE
    Bioresour Technol; 2013 Mar; 132():269-75. PubMed ID: 23411458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analysis of feasibility of bioethanol production from Taiwan sorghum liquor waste.
    Su MY; Tzeng WS; Shyu YT
    Bioresour Technol; 2010 Sep; 101(17):6669-75. PubMed ID: 20427178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol production from H(2)SO (3)-steam-pretreated fresh sweet sorghum stem by simultaneous saccharification and fermentation.
    Yu J; Zhong J; Zhang X; Tan T
    Appl Biochem Biotechnol; 2010 Jan; 160(2):401-9. PubMed ID: 18777165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective.
    Alokika ; Anu ; Kumar A; Kumar V; Singh B
    Int J Biol Macromol; 2021 Feb; 169():564-582. PubMed ID: 33385447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.