These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20803482)

  • 41. Information theory-based surrogate marker evaluation from several randomized clinical trials with binary endpoints, using SAS.
    Tilahun A; Pryseley A; Alonso A; Molenberghs G
    J Biopharm Stat; 2008; 18(2):326-41. PubMed ID: 18327724
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Considerations on covariates and endpoints in multi-arm multi-stage clinical trials selecting all promising treatments.
    Jaki T; Magirr D
    Stat Med; 2013 Mar; 32(7):1150-63. PubMed ID: 23112135
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Links between causal effects and causal association for surrogacy evaluation in a gaussian setting.
    Conlon A; Taylor J; Li Y; Diaz-Ordaz K; Elliott M
    Stat Med; 2017 Nov; 36(27):4243-4265. PubMed ID: 28786131
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predicting treatment effect from surrogate endpoints and historical trials: an extrapolation involving probabilities of a binary outcome or survival to a specific time.
    Baker SG; Sargent DJ; Buyse M; Burzykowski T
    Biometrics; 2012 Mar; 68(1):248-57. PubMed ID: 21838732
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of Copula Directional Specification on Multi-Trial Evaluation of Surrogate End Points.
    Renfro LA; Shang H; Sargent DJ
    J Biopharm Stat; 2015; 25(4):857-77. PubMed ID: 24905465
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An investigation into the two-stage meta-analytic copula modelling approach for evaluating time-to-event surrogate endpoints which comprise of one or more events of interest.
    Dimier N; Todd S
    Pharm Stat; 2017 Sep; 16(5):322-333. PubMed ID: 28544622
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Some Issues of Sample Size Calculation for Time-to-Event Endpoints Using the Freedman and Schoenfeld Formulas.
    Abel UR; Jensen K; Karapanagiotou-Schenkel I; Kieser M
    J Biopharm Stat; 2015; 25(6):1285-311. PubMed ID: 25629760
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nested combination tests with a time-to-event endpoint using a short-term endpoint for design adaptations.
    Jörgens S; Wassmer G; König F; Posch M
    Pharm Stat; 2019 May; 18(3):329-350. PubMed ID: 30652401
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Statistical considerations for the next generation of clinical trials.
    Wu W; Shi Q; Sargent DJ
    Semin Oncol; 2011 Aug; 38(4):598-604. PubMed ID: 21810519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surrogacy marker paradox measures in meta-analytic settings.
    Elliott MR; Conlon AS; Li Y; Kaciroti N; Taylor JM
    Biostatistics; 2015 Apr; 16(2):400-12. PubMed ID: 25236906
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Use of the likelihood reduction factor in a path analysis framework to quantify surrogacy in clinical trials.
    Bloore K; Song Y; Cabral H; Massaro J; LaValley M
    Stat Med; 2021 Dec; 40(28):6373-6386. PubMed ID: 34545969
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Estimation of causal effects in clinical endpoint bioequivalence studies in the presence of intercurrent events: noncompliance and missing data.
    Lou Y; Jones MP; Sun W
    J Biopharm Stat; 2019; 29(1):151-173. PubMed ID: 29995564
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predictive probability of success using surrogate endpoints.
    Saint-Hilary G; Barboux V; Pannaux M; Gasparini M; Robert V; Mastrantonio G
    Stat Med; 2019 May; 38(10):1753-1774. PubMed ID: 30548627
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Instruments and bounds for causal effects under the monotonic selection assumption.
    Taguri M; Chiba Y
    Int J Biostat; 2012 Aug; 8(1):24. PubMed ID: 22944723
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Incorporating baseline covariates to validate surrogate endpoints with a constant biomarker under control arm.
    Roberts EK; Elliott MR; Taylor JMG
    Stat Med; 2021 Dec; 40(29):6605-6618. PubMed ID: 34528260
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Statistical controversies in clinical research: an initial evaluation of a surrogate end point using a single randomized clinical trial and the Prentice criteria.
    Heller G
    Ann Oncol; 2015 Oct; 26(10):2012-6. PubMed ID: 26254442
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Uncertainty in the Bayesian meta-analysis of normally distributed surrogate endpoints.
    Bujkiewicz S; Thompson JR; Spata E; Abrams KR
    Stat Methods Med Res; 2017 Oct; 26(5):2287-2318. PubMed ID: 26271918
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An entropy-based nonparametric test for the validation of surrogate endpoints.
    Miao X; Wang YC; Gangopadhyay A
    Stat Med; 2012 Jun; 31(14):1517-30. PubMed ID: 22344829
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessing the value of a censored surrogate outcome.
    Parast L; Tian L; Cai T
    Lifetime Data Anal; 2020 Apr; 26(2):245-265. PubMed ID: 30980316
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A consistency-adjusted alpha-adaptive strategy for sequential testing.
    Alosh M; Huque MF
    Stat Med; 2010 Jul; 29(15):1559-71. PubMed ID: 20552571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.