These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20803557)

  • 1. A sequential Cox approach for estimating the causal effect of treatment in the presence of time-dependent confounding applied to data from the Swiss HIV Cohort Study.
    Gran JM; Røysland K; Wolbers M; Didelez V; Sterne JA; Ledergerber B; Furrer H; von Wyl V; Aalen OO
    Stat Med; 2010 Nov; 29(26):2757-68. PubMed ID: 20803557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men.
    Hernán MA; Brumback B; Robins JM
    Epidemiology; 2000 Sep; 11(5):561-70. PubMed ID: 10955409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of the marginal structural cox model for estimating individual and joined effects of treatments given in combination.
    Lusivika-Nzinga C; Selinger-Leneman H; Grabar S; Costagliola D; Carrat F
    BMC Med Res Methodol; 2017 Dec; 17(1):160. PubMed ID: 29202691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of statistical approaches dealing with time-dependent confounding in drug effectiveness studies.
    Karim ME; Petkau J; Gustafson P; Platt RW; Tremlett H;
    Stat Methods Med Res; 2018 Jun; 27(6):1709-1722. PubMed ID: 27659168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Marginal structural models application to estimate the effects of antiretroviral therapy in 5 cohorts of HIV seroconverters].
    Pérez-Hoyos S; Ferreros I; Hernán MA;
    Gac Sanit; 2007; 21(1):76-83. PubMed ID: 17306191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Causal inference in survival analysis using longitudinal observational data: Sequential trials and marginal structural models.
    Keogh RH; Gran JM; Seaman SR; Davies G; Vansteelandt S
    Stat Med; 2023 Jun; 42(13):2191-2225. PubMed ID: 37086186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marginal structural models and causal inference in epidemiology.
    Robins JM; Hernán MA; Brumback B
    Epidemiology; 2000 Sep; 11(5):550-60. PubMed ID: 10955408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing direct and indirect effects of treatment using dynamic path analysis applied to data from the Swiss HIV Cohort Study.
    Røysland K; Gran JM; Ledergerber B; von Wyl V; Young J; Aalen OO
    Stat Med; 2011 Oct; 30(24):2947-58. PubMed ID: 21800346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating the causal effect of zidovudine on CD4 count with a marginal structural model for repeated measures.
    Hernán MA; Brumback BA; Robins JM
    Stat Med; 2002 Jun; 21(12):1689-709. PubMed ID: 12111906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical Methods for Modeling Time-Updated Exposures in Cohort Studies of Chronic Kidney Disease.
    Xie D; Yang W; Jepson C; Roy J; Hsu JY; Shou H; Anderson AH; Landis JR; Feldman HI;
    Clin J Am Soc Nephrol; 2017 Nov; 12(11):1892-1899. PubMed ID: 28818846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural accelerated failure time models for survival analysis in studies with time-varying treatments.
    Hernán MA; Cole SR; Margolick J; Cohen M; Robins JM
    Pharmacoepidemiol Drug Saf; 2005 Jul; 14(7):477-91. PubMed ID: 15660442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating from marginal structural models with time-dependent confounding.
    Havercroft WG; Didelez V
    Stat Med; 2012 Dec; 31(30):4190-206. PubMed ID: 22826156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of conventional and marginal structural Cox model estimators: a simulation study.
    Xiao Y; Abrahamowicz M; Moodie EE
    Int J Biostat; 2010; 6(2):Article 13. PubMed ID: 21969997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the causal effect of treatment initiation time on survival: Application to HIV/TB co-infection.
    Hu L; Hogan JW; Mwangi AW; Siika A
    Biometrics; 2018 Jun; 74(2):703-713. PubMed ID: 28960243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unifying instrumental variable and inverse probability weighting approaches for inference of causal treatment effect and unmeasured confounding in observational studies.
    Liu T; Hogan JW
    Stat Methods Med Res; 2021 Mar; 30(3):671-686. PubMed ID: 33213292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An application of propensity score weighting to quantify the causal effect of rectal sexually transmitted infections on incident HIV among men who have sex with men.
    Vaughan AS; Kelley CF; Luisi N; del Rio C; Sullivan PS; Rosenberg ES
    BMC Med Res Methodol; 2015 Mar; 15():25. PubMed ID: 25888416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simulation study of finite-sample properties of marginal structural Cox proportional hazards models.
    Westreich D; Cole SR; Schisterman EF; Platt RW
    Stat Med; 2012 Aug; 31(19):2098-109. PubMed ID: 22492660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the effects of multiple time-varying exposures using joint marginal structural models: alcohol consumption, injection drug use, and HIV acquisition.
    Howe CJ; Cole SR; Mehta SH; Kirk GD
    Epidemiology; 2012 Jul; 23(4):574-82. PubMed ID: 22495473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation from a known Cox MSM using standard parametric models for the g-formula.
    Young JG; Tchetgen Tchetgen EJ
    Stat Med; 2014 Mar; 33(6):1001-14. PubMed ID: 24151138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.