BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 20803602)

  • 1. Subvisible particle counting provides a sensitive method of detecting and quantifying aggregation of monoclonal antibody caused by freeze-thawing: insights into the roles of particles in the protein aggregation pathway.
    Barnard JG; Singh S; Randolph TW; Carpenter JF
    J Pharm Sci; 2011 Feb; 100(2):492-503. PubMed ID: 20803602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free flow cytometry analysis of subvisible aggregates in liquid IgG1 antibody formulations.
    Nishi H; Mathäs R; Fürst R; Winter G
    J Pharm Sci; 2014 Jan; 103(1):90-9. PubMed ID: 24218205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation.
    Kolhe P; Amend E; Singh SK
    Biotechnol Prog; 2010; 26(3):727-33. PubMed ID: 20039442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freeze/thaw of IGG solutions.
    Horn J; Jena S; Aksan A; Friess W
    Eur J Pharm Biopharm; 2019 Jan; 134():185-189. PubMed ID: 30529434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.
    Sarciaux JM; Mansour S; Hageman MJ; Nail SL
    J Pharm Sci; 1999 Dec; 88(12):1354-61. PubMed ID: 10585234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculating the mass of subvisible protein particles with improved accuracy using microflow imaging data.
    Kalonia C; Kumru OS; Prajapati I; Mathaes R; Engert J; Zhou S; Middaugh CR; Volkin DB
    J Pharm Sci; 2015 Feb; 104(2):536-47. PubMed ID: 25302696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural properties of monoclonal antibody aggregates induced by freeze-thawing and thermal stress.
    Hawe A; Kasper JC; Friess W; Jiskoot W
    Eur J Pharm Sci; 2009 Sep; 38(2):79-87. PubMed ID: 19540340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of subvisible particle formation during the filling pump operation of a monoclonal antibody solution.
    Nayak A; Colandene J; Bradford V; Perkins M
    J Pharm Sci; 2011 Oct; 100(10):4198-204. PubMed ID: 21698601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Product and process understanding to relate the effect of freezing method on glycation and aggregation of lyophilized monoclonal antibody formulations.
    Awotwe-Otoo D; Agarabi C; Read EK; Lute S; Brorson KA; Khan MA
    Int J Pharm; 2015 Jul; 490(1-2):341-50. PubMed ID: 25835267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb.
    Ghazvini S; Kalonia C; Volkin DB; Dhar P
    J Pharm Sci; 2016 May; 105(5):1643-1656. PubMed ID: 27025981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water Proton NMR: A Tool for Protein Aggregation Characterization.
    Taraban MB; DePaz RA; Lobo B; Yu YB
    Anal Chem; 2017 May; 89(10):5494-5502. PubMed ID: 28440620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the freezing of biopharmaceuticals: first-principle modeling of the process and evaluation of its effect on product quality.
    Radmanovic N; Serno T; Joerg S; Germershaus O
    J Pharm Sci; 2013 Aug; 102(8):2495-507. PubMed ID: 23775776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freezing-induced perturbation of tertiary structure of a monoclonal antibody.
    Liu L; Braun LJ; Wang W; Randolph TW; Carpenter JF
    J Pharm Sci; 2014 Jul; 103(7):1979-1986. PubMed ID: 24832730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated stability studies of abatacept formulations: comparison of freeze-thawing- and agitation-induced stresses.
    Cordes AA; Carpenter JF; Randolph TW
    J Pharm Sci; 2012 Jul; 101(7):2307-15. PubMed ID: 22488299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions.
    Telikepalli SN; Kumru OS; Kalonia C; Esfandiary R; Joshi SB; Middaugh CR; Volkin DB
    J Pharm Sci; 2014 Mar; 103(3):796-809. PubMed ID: 24452866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Buffer, Protein Concentration and Sucrose Addition on the Aggregation and Particle Formation during Freezing and Thawing.
    Hauptmann A; Podgoršek K; Kuzman D; Srčič S; Hoelzl G; Loerting T
    Pharm Res; 2018 Mar; 35(5):101. PubMed ID: 29556730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of lyophilized sucrose formulations of an IgG1: subvisible particle formation.
    Davis JM; Zhang N; Payne RW; Murphy BM; Abdul-Fattah AM; Matsuura JE; Herman AC; Manning MC
    Pharm Dev Technol; 2013; 18(4):883-96. PubMed ID: 22813478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agitation-induced aggregation and subvisible particulate formation in model proteins.
    Jayaraman M; Buck PM; Ignatius AA; King KR; Wang W
    Eur J Pharm Biopharm; 2014 Jul; 87(2):299-309. PubMed ID: 24462794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compatibility, physical stability, and characterization of an IgG4 monoclonal antibody after dilution into different intravenous administration bags.
    Kumru OS; Liu J; Ji JA; Cheng W; Wang YJ; Wang T; Joshi SB; Middaugh CR; Volkin DB
    J Pharm Sci; 2012 Oct; 101(10):3636-50. PubMed ID: 22733600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gelation of a monoclonal antibody at the silicone oil-water interface and subsequent rupture of the interfacial gel results in aggregation and particle formation.
    Mehta SB; Lewus R; Bee JS; Randolph TW; Carpenter JF
    J Pharm Sci; 2015 Apr; 104(4):1282-90. PubMed ID: 25639229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.