These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 20804128)
1. Proteomic and bioinformatic analysis of the root-knot nematode Meloidogyne hapla: the basis for plant parasitism. Mbeunkui F; Scholl EH; Opperman CH; Goshe MB; Bird DM J Proteome Res; 2010 Oct; 9(10):5370-81. PubMed ID: 20804128 [TBL] [Abstract][Full Text] [Related]
2. Identification of Yersinia pestis and Escherichia coli strains by whole cell and outer membrane protein extracts with mass spectrometry-based proteomics. Jabbour RE; Wade MM; Deshpande SV; Stanford MF; Wick CH; Zulich AW; Snyder AP J Proteome Res; 2010 Jul; 9(7):3647-55. PubMed ID: 20486690 [TBL] [Abstract][Full Text] [Related]
3. A secretory cellulose-binding protein cDNA cloned from the root-knot nematode (Meloidogyne incognita). Ding X; Shields J; Allen R; Hussey RS Mol Plant Microbe Interact; 1998 Oct; 11(10):952-9. PubMed ID: 9768512 [TBL] [Abstract][Full Text] [Related]
4. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. Bellafiore S; Shen Z; Rosso MN; Abad P; Shih P; Briggs SP PLoS Pathog; 2008 Oct; 4(10):e1000192. PubMed ID: 18974830 [TBL] [Abstract][Full Text] [Related]
5. PCHM: A bioinformatic resource for high-throughput human mitochondrial proteome searching and comparison. Kim T; Kim E; Park SJ; Joo H Comput Biol Med; 2009 Aug; 39(8):689-96. PubMed ID: 19541297 [TBL] [Abstract][Full Text] [Related]
6. AVID: an integrative framework for discovering functional relationships among proteins. Jiang T; Keating AE BMC Bioinformatics; 2005 Jun; 6():136. PubMed ID: 15929793 [TBL] [Abstract][Full Text] [Related]
7. Genome annotation of Anopheles gambiae using mass spectrometry-derived data. Kalume DE; Peri S; Reddy R; Zhong J; Okulate M; Kumar N; Pandey A BMC Genomics; 2005 Sep; 6():128. PubMed ID: 16171517 [TBL] [Abstract][Full Text] [Related]
8. The complexity of the secreted NPA and FAR lipid-binding protein families of Haemonchus contortus revealed by an iterative proteomics-bioinformatics approach. Kuang L; Colgrave ML; Bagnall NH; Knox MR; Qian M; Wijffels G Mol Biochem Parasitol; 2009 Nov; 168(1):84-94. PubMed ID: 19615410 [TBL] [Abstract][Full Text] [Related]
9. Proteomic profiles of soluble proteins from the esophageal gland in female Meloidogyne incognita. Wang XR; Moreno YA; Wu HR; Ma C; Li YF; Zhang JA; Yang C; Sun S; Ma WJ; Geary TG Int J Parasitol; 2012 Dec; 42(13-14):1177-83. PubMed ID: 23142006 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide analysis of Excretory/Secretory proteins in root-knot nematode, Meloidogyne incognita provides potential targets for parasite control. Gahoi S; Gautam B Comput Biol Chem; 2017 Apr; 67():225-233. PubMed ID: 28187376 [TBL] [Abstract][Full Text] [Related]
11. A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Huang G; Dong R; Allen R; Davis EL; Baum TJ; Hussey RS Mol Plant Microbe Interact; 2006 May; 19(5):463-70. PubMed ID: 16673933 [TBL] [Abstract][Full Text] [Related]
12. de novo analysis and functional classification of the transcriptome of the root lesion nematode, Pratylenchus thornei, after 454 GS FLX sequencing. Nicol P; Gill R; Fosu-Nyarko J; Jones MG Int J Parasitol; 2012; 42(3):225-37. PubMed ID: 22309969 [TBL] [Abstract][Full Text] [Related]
13. In-depth proteomic profiling of the normal human kidney glomerulus using two-dimensional protein prefractionation in combination with liquid chromatography-tandem mass spectrometry. Miyamoto M; Yoshida Y; Taguchi I; Nagasaka Y; Tasaki M; Zhang Y; Xu B; Nameta M; Sezaki H; Cuellar LM; Osawa T; Morishita H; Sekiyama S; Yaoita E; Kimura K; Yamamoto T J Proteome Res; 2007 Sep; 6(9):3680-90. PubMed ID: 17711322 [TBL] [Abstract][Full Text] [Related]
14. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Omenn GS; States DJ; Adamski M; Blackwell TW; Menon R; Hermjakob H; Apweiler R; Haab BB; Simpson RJ; Eddes JS; Kapp EA; Moritz RL; Chan DW; Rai AJ; Admon A; Aebersold R; Eng J; Hancock WS; Hefta SA; Meyer H; Paik YK; Yoo JS; Ping P; Pounds J; Adkins J; Qian X; Wang R; Wasinger V; Wu CY; Zhao X; Zeng R; Archakov A; Tsugita A; Beer I; Pandey A; Pisano M; Andrews P; Tammen H; Speicher DW; Hanash SM Proteomics; 2005 Aug; 5(13):3226-45. PubMed ID: 16104056 [TBL] [Abstract][Full Text] [Related]
15. Identification of Two Meloidogyne hapla Genes and an Investigation of Their Roles in the Plant-Nematode Interaction. Gleason C; Polzin F; Habash SS; Zhang L; Utermark J; Grundler FM; Elashry A Mol Plant Microbe Interact; 2017 Feb; 30(2):101-112. PubMed ID: 28301312 [TBL] [Abstract][Full Text] [Related]
16. Helicobacter pylori proteomics by 2-DE/MS, 1-DE-LC/MS and functional data mining. Jungblut PR; Schiele F; Zimny-Arndt U; Ackermann R; Schmid M; Lange S; Stein R; Pleissner KP Proteomics; 2010 Jan; 10(2):182-93. PubMed ID: 19941309 [TBL] [Abstract][Full Text] [Related]
17. Comparison of two tandem mass spectrometry-based methods for analyzing the proteome of healthy human lens fibers. Zhang C; Liu P; Wang N; Li Y; Wang L Mol Vis; 2007 Oct; 13():1873-7. PubMed ID: 17960125 [TBL] [Abstract][Full Text] [Related]
18. Global proteome discovery using an online three-dimensional LC-MS/MS. Wei J; Sun J; Yu W; Jones A; Oeller P; Keller M; Woodnutt G; Short JM J Proteome Res; 2005; 4(3):801-8. PubMed ID: 15952726 [TBL] [Abstract][Full Text] [Related]
19. pep2pro: a new tool for comprehensive proteome data analysis to reveal information about organ-specific proteomes in Arabidopsis thaliana. Baerenfaller K; Hirsch-Hoffmann M; Svozil J; Hull R; Russenberger D; Bischof S; Lu Q; Gruissem W; Baginsky S Integr Biol (Camb); 2011 Mar; 3(3):225-37. PubMed ID: 21264403 [TBL] [Abstract][Full Text] [Related]