BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 20804175)

  • 1. Lipid-protein correlations in nanoscale phospholipid bilayers determined by solid-state nuclear magnetic resonance.
    Kijac A; Shih AY; Nieuwkoop AJ; Schulten K; Sligar SG; Rienstra CM
    Biochemistry; 2010 Nov; 49(43):9190-8. PubMed ID: 20804175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation.
    Nagao T; Mishima D; Javkhlantugs N; Wang J; Ishioka D; Yokota K; Norisada K; Kawamura I; Ueda K; Naito A
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2789-98. PubMed ID: 26248014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smaller Nanodiscs are Suitable for Studying Protein Lipid Interactions by Solution NMR.
    Wang X; Mu Z; Li Y; Bi Y; Wang Y
    Protein J; 2015 Jun; 34(3):205-11. PubMed ID: 25980794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Lipid and Membrane Protein Dynamics Using Lipid-Bilayer Nanodiscs and Solution-State NMR Spectroscopy.
    Bibow S
    Methods Mol Biol; 2020; 2127():397-419. PubMed ID: 32112335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs.
    Morgan CR; Hebling CM; Rand KD; Stafford DW; Jorgenson JW; Engen JR
    Mol Cell Proteomics; 2011 Sep; 10(9):M111.010876. PubMed ID: 21715319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in the use of nanoscale bilayers to study membrane protein structure and function.
    Malhotra K; Alder NN
    Biotechnol Genet Eng Rev; 2014 Oct; 30(1-2):79-93. PubMed ID: 25023464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid Internal Dynamics Probed in Nanodiscs.
    Martinez D; Decossas M; Kowal J; Frey L; Stahlberg H; Dufourc EJ; Riek R; Habenstein B; Bibow S; Loquet A
    Chemphyschem; 2017 Oct; 18(19):2651-2657. PubMed ID: 28573816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the dynamic properties of the transmembrane segment of phospholamban incorporated into phospholipid bilayers utilizing 2H and 15N solid-state NMR spectroscopy.
    Tiburu EK; Karp ES; Dave PC; Damodaran K; Lorigan GA
    Biochemistry; 2004 Nov; 43(44):13899-909. PubMed ID: 15518538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freezing point depression of water in phospholipid membranes: a solid-state NMR study.
    Lee DK; Kwon BS; Ramamoorthy A
    Langmuir; 2008 Dec; 24(23):13598-604. PubMed ID: 18991419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs.
    Hagn F; Wagner G
    J Biomol NMR; 2015 Apr; 61(3-4):249-60. PubMed ID: 25430058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Advanced Properties of Circularized MSP Nanodiscs Facilitate High-resolution NMR Studies of Membrane Proteins.
    Daniilidis M; Brandl MJ; Hagn F
    J Mol Biol; 2022 Dec; 434(24):167861. PubMed ID: 36273602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR.
    Hagn F; Nasr ML; Wagner G
    Nat Protoc; 2018 Jan; 13(1):79-98. PubMed ID: 29215632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elliptical structure of phospholipid bilayer nanodiscs encapsulated by scaffold proteins: casting the roles of the lipids and the protein.
    Skar-Gislinge N; Simonsen JB; Mortensen K; Feidenhans'l R; Sligar SG; Lindberg Møller B; Bjørnholm T; Arleth L
    J Am Chem Soc; 2010 Oct; 132(39):13713-22. PubMed ID: 20828154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-state NMR spectroscopy of 18.5 kDa myelin basic protein reconstituted with lipid vesicles: spectroscopic characterisation and spectral assignments of solvent-exposed protein fragments.
    Zhong L; Bamm VV; Ahmed MA; Harauz G; Ladizhansky V
    Biochim Biophys Acta; 2007 Dec; 1768(12):3193-205. PubMed ID: 17920035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies.
    Zhang R; Sahu ID; Liu L; Osatuke A; Comer RG; Dabney-Smith C; Lorigan GA
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt B):329-33. PubMed ID: 24853657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature- and composition-dependent conformational transitions of amphipathic peptide-phospholipid nanodiscs.
    Anada C; Ikeda K; Egawa A; Fujiwara T; Nakao H; Nakano M
    J Colloid Interface Sci; 2021 Apr; 588():522-530. PubMed ID: 33429348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic view of calcium-induced clustering of phosphatidylserine in mixed lipid bilayers.
    Boettcher JM; Davis-Harrison RL; Clay MC; Nieuwkoop AJ; Ohkubo YZ; Tajkhorshid E; Morrissey JH; Rienstra CM
    Biochemistry; 2011 Mar; 50(12):2264-73. PubMed ID: 21294564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy.
    Li Y; Kijac AZ; Sligar SG; Rienstra CM
    Biophys J; 2006 Nov; 91(10):3819-28. PubMed ID: 16905610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical characterization of membrane proteins in nanodiscs.
    Inagaki S; Ghirlando R; Grisshammer R
    Methods; 2013 Mar; 59(3):287-300. PubMed ID: 23219517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.