These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20804384)

  • 1. Rademacher chaos complexities for learning the kernel problem.
    Ying Y; Campbell C
    Neural Comput; 2010 Nov; 22(11):2858-86. PubMed ID: 20804384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refined rademacher chaos complexity bounds with applications to the multikernel learning problem.
    Lei Y; Ding L
    Neural Comput; 2014 Apr; 26(4):739-60. PubMed ID: 24479777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalization Bounds for Coregularized Multiple Kernel Learning.
    Wu X; Hu G
    Comput Intell Neurosci; 2018; 2018():1853517. PubMed ID: 30515195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refined Generalization Bounds of Gradient Learning over Reproducing Kernel Hilbert Spaces.
    Lv SG
    Neural Comput; 2015 Jun; 27(6):1294-320. PubMed ID: 25826021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning eigenfunctions links spectral embedding and kernel PCA.
    Bengio Y; Delalleau O; Le Roux N; Paiement JF; Vincent P; Ouimet M
    Neural Comput; 2004 Oct; 16(10):2197-219. PubMed ID: 15333211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple spectral kernel learning and a gaussian complexity computation.
    Reyhani N
    Neural Comput; 2013 Jul; 25(7):1926-51. PubMed ID: 23607555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning With Kernels: A Local Rademacher Complexity-Based Analysis With Application to Graph Kernels.
    Oneto L; Navarin N; Donini M; Ridella S; Sperduti A; Aiolli F; Anguita D
    IEEE Trans Neural Netw Learn Syst; 2018 Oct; 29(10):4660-4671. PubMed ID: 29990207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topographic map formation of factorized Edgeworth-expanded kernels.
    Van Hulle MM
    Neural Netw; 2006; 19(6-7):744-50. PubMed ID: 16759836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. U-processes and preference learning.
    Li H; Ren C; Li L
    Neural Comput; 2014 Dec; 26(12):2896-924. PubMed ID: 25248084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DAML: domain adaptation metric learning.
    Geng B; Tao D; Xu C
    IEEE Trans Image Process; 2011 Oct; 20(10):2980-9. PubMed ID: 21926008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Framelet kernels with applications to support vector regression and regularization networks.
    Zhang WF; Dai DQ; Yan H
    IEEE Trans Syst Man Cybern B Cybern; 2010 Aug; 40(4):1128-44. PubMed ID: 19963701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalization performance of radial basis function networks.
    Lei Y; Ding L; Zhang W
    IEEE Trans Neural Netw Learn Syst; 2015 Mar; 26(3):551-64. PubMed ID: 25720010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the complexity of computing and learning with multiplicative neural networks.
    Schmitt M
    Neural Comput; 2002 Feb; 14(2):241-301. PubMed ID: 11802913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized multiscale radial basis function networks.
    Billings SA; Wei HL; Balikhin MA
    Neural Netw; 2007 Dec; 20(10):1081-94. PubMed ID: 17993257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kernels for generalized multiple-instance learning.
    Tao Q; Scott SD; Vinodchandran NV; Osugi TT; Mueller B
    IEEE Trans Pattern Anal Mach Intell; 2008 Dec; 30(12):2084-98. PubMed ID: 18988944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guaranteed classification via regularized similarity learning.
    Guo ZC; Ying Y
    Neural Comput; 2014 Mar; 26(3):497-522. PubMed ID: 24320848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On learning vector-valued functions.
    Micchelli CA; Pontil M
    Neural Comput; 2005 Jan; 17(1):177-204. PubMed ID: 15563752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kernel-based topographic map formation by local density modeling.
    Van Hulle MM
    Neural Comput; 2002 Jul; 14(7):1561-73. PubMed ID: 12079546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sparse multiple kernel learning for signal processing applications.
    Subrahmanya N; Shin YC
    IEEE Trans Pattern Anal Mach Intell; 2010 May; 32(5):788-98. PubMed ID: 20299705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A local Vapnik-Chervonenkis complexity.
    Oneto L; Anguita D; Ridella S
    Neural Netw; 2016 Oct; 82():62-75. PubMed ID: 27474843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.