These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20804640)

  • 1. Suberized cell walls of cork from cork oak differ from other species.
    Teixeira RT; Pereira H
    Microsc Microanal; 2010 Oct; 16(5):569-75. PubMed ID: 20804640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural observations reveal the presence of channels between cork cells.
    Teixeira RT; Pereira H
    Microsc Microanal; 2009 Dec; 15(6):539-44. PubMed ID: 19811698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomy and development of the endodermis and phellem of Quercus suber L. roots.
    Machado A; Pereira H; Teixeira RT
    Microsc Microanal; 2013 Jun; 19(3):525-34. PubMed ID: 23551860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical composition and ultrastructure of broad bean (Vicia faba L.) nodule endodermis in comparison to the root endodermis.
    Hartmann K; Peiter E; Koch K; Schubert S; Schreiber L
    Planta; 2002 May; 215(1):14-25. PubMed ID: 12012237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cork cells in cork oak periderms undergo programmed cell death and proanthocyanidin deposition.
    Inácio V; Lobato C; Graça J; Morais-Cecílio L
    Tree Physiol; 2021 Sep; 41(9):1701-1713. PubMed ID: 33611604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology of foliar trichomes of the Chinese cork oak Quercus variabilis by electron microscopy and three-dimensional surface profiling.
    Kim KW; Cho DH; Kim PG
    Microsc Microanal; 2011 Jun; 17(3):461-8. PubMed ID: 21554831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The macromolecular aromatic domain in suberized tissue: a changing paradigm.
    Bernards MA; Lewis NG
    Phytochemistry; 1998 Mar; 47(6):915-33. PubMed ID: 11536868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple method for improved visualization of the lamellated structure of cutinized and suberized plant cell walls by electron microscopy.
    Heumann HG
    Stain Technol; 1990; 65(4):183-7. PubMed ID: 1699304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal development of suberized barriers in cork oak taproots.
    Leal AR; Sapeta H; Beeckman T; Barros PM; Oliveira MM
    Tree Physiol; 2022 Jun; 42(6):1269-1285. PubMed ID: 34970982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing anatomy, chemical composition, and water permeability of suberized organs in five plant species: wax makes the difference.
    Suresh K; Zeisler-Diehl VV; Wojciechowski T; Schreiber L
    Planta; 2022 Aug; 256(3):60. PubMed ID: 35988126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quercus suber cork extract displays a tensor and smoothing effect on human skin: an in vivo study.
    Coquet C; Bauza E; Oberto G; Berghi A; Farnet AM; Ferré E; Peyronel D; Dal Farra C; Domloge N
    Drugs Exp Clin Res; 2005; 31(3):89-99. PubMed ID: 16033247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChIP-Seq reveals that QsMYB1 directly targets genes involved in lignin and suberin biosynthesis pathways in cork oak (Quercus suber).
    Capote T; Barbosa P; Usié A; Ramos AM; Inácio V; Ordás R; Gonçalves S; Morais-Cecílio L
    BMC Plant Biol; 2018 Sep; 18(1):198. PubMed ID: 30223777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhytidome- and cork-type barks of holm oak, cork oak and their hybrids highlight processes leading to cork formation.
    Armendariz I; López de Heredia U; Soler M; Puigdemont A; Ruiz MM; Jové P; Soto Á; Serra O; Figueras M
    BMC Plant Biol; 2024 Jun; 24(1):488. PubMed ID: 38825683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical composition of leaf cutin in six Quercus suber provenances.
    Simões R; Miranda I; Pereira H
    Phytochemistry; 2021 Jan; 181():112570. PubMed ID: 33166753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical characterization of cork, phloem and wood from different
    Costa R; Lourenço A; Oliveira V; Pereira H
    Heliyon; 2019 Dec; 5(12):e02910. PubMed ID: 31872113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of season on carbon allocation to suberin and other stem components of cork oak saplings.
    Aguado PL; Curt MD; Pereira H; Fernández J
    Tree Physiol; 2017 Feb; 37(2):165-172. PubMed ID: 27974649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting nuclear and cytoplasmic exchanges between phylogenetically distant oak species (Quercus suber L. and Q. ilex L.) in Southern France: inferring crosses and dynamics.
    Mir C; Jarne P; Sarda V; Bonin A; Lumaret R
    Plant Biol (Stuttg); 2009 Mar; 11(2):213-26. PubMed ID: 19228328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling ferulate role in suberin and periderm biology by reverse genetics.
    Serra O; Figueras M; Franke R; Prat S; Molinas M
    Plant Signal Behav; 2010 Aug; 5(8):953-8. PubMed ID: 20657184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of pectic polysaccharides in cork cell wall from Quercus suber L.
    Rocha SM; Coimbra MA; Delgadillo I
    J Agric Food Chem; 2000 Jun; 48(6):2003-7. PubMed ID: 10888489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endemic North African Quercus afares Pomel originates from hybridisation between two genetically very distant oak species (Q. suber L. and Q. canariensis Willd.): evidence from nuclear and cytoplasmic markers.
    Mir C; Toumi L; Jarne P; Sarda V; Di Giusto F; Lumaret R
    Heredity (Edinb); 2006 Feb; 96(2):175-84. PubMed ID: 16369575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.