These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 20804860)

  • 1. Comparing metabolic network models based on genomic and automatically inferred enzyme information from Plasmodium and its human host to define drug targets in silico.
    Fatumo S; Plaimas K; Adebiyi E; König R
    Infect Genet Evol; 2011 Jan; 11(1):201-8. PubMed ID: 20804860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing metabolic network models based on genomic and automatically inferred enzyme information from Plasmodium and its human host to define drug targets in silico.
    Fatumo S; Plaimas K; Adebiyi E; König R
    Infect Genet Evol; 2011 Jun; 11(4):708-15. PubMed ID: 21515412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico.
    Fatumo S; Plaimas K; Mallm JP; Schramm G; Adebiyi E; Oswald M; Eils R; König R
    Infect Genet Evol; 2009 May; 9(3):351-8. PubMed ID: 18313365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observing local and global properties of metabolic pathways: 'load points' and 'choke points' in the metabolic networks.
    Rahman SA; Schomburg D
    Bioinformatics; 2006 Jul; 22(14):1767-74. PubMed ID: 16682421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting multiple targets in Pseudomonas aeruginosa PAO1 using flux balance analysis of a reconstructed genome-scale metabolic network.
    Perumal D; Samal A; Sakharkar KR; Sakharkar MK
    J Drug Target; 2011 Jan; 19(1):1-13. PubMed ID: 20233082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE.
    Kim HU; Kim TY; Lee SY
    Mol Biosyst; 2010 Feb; 6(2):339-48. PubMed ID: 20094653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-scale modeling and in silico analysis of mouse cell metabolic network.
    Selvarasu S; Karimi IA; Ghim GH; Lee DY
    Mol Biosyst; 2010 Jan; 6(1):152-61. PubMed ID: 20024077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caveat emptor: limitations of the automated reconstruction of metabolic pathways in Plasmodium.
    Ginsburg H
    Trends Parasitol; 2009 Jan; 25(1):37-43. PubMed ID: 18986839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UvrD helicase of Plasmodium falciparum.
    Shankar J; Tuteja R
    Gene; 2008 Mar; 410(2):223-33. PubMed ID: 18242886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolution of metabolic enzymes in Plasmodium and trypanosomatids as compared to Saccharomyces and Schizosaccharomyces.
    Palenchar PM; Palenchar JB
    Mol Biochem Parasitol; 2012 Jul; 184(1):13-9. PubMed ID: 22498309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human metabolic network reconstruction and its impact on drug discovery and development.
    Ma H; Goryanin I
    Drug Discov Today; 2008 May; 13(9-10):402-8. PubMed ID: 18468557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of important interacting proteins (IIPs) in Plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies.
    Bhattacharyya M; Chakrabarti S
    Malar J; 2015 Feb; 14():70. PubMed ID: 25879642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel paradigm for potential drug-targets discovery: quantifying relationships of enzymes and cascade interactions of neighboring biological processes to identify drug-targets.
    Chen L; Wang Q; Zhang L; Tai J; Wang H; Li W; Li X; He W; Li X
    Mol Biosyst; 2011 Apr; 7(4):1033-41. PubMed ID: 21270979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network.
    Lee J; Yun H; Feist AM; Palsson BØ; Lee SY
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):849-62. PubMed ID: 18758767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional consequences of perturbing polyamine metabolism in the malaria parasite, Plasmodium falciparum.
    Clark K; Niemand J; Reeksting S; Smit S; van Brummelen AC; Williams M; Louw AI; Birkholtz L
    Amino Acids; 2010 Feb; 38(2):633-44. PubMed ID: 19997948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A protein interaction network of the malaria parasite Plasmodium falciparum.
    LaCount DJ; Vignali M; Chettier R; Phansalkar A; Bell R; Hesselberth JR; Schoenfeld LW; Ota I; Sahasrabudhe S; Kurschner C; Fields S; Hughes RE
    Nature; 2005 Nov; 438(7064):103-7. PubMed ID: 16267556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curation of the Plasmodium falciparum genome.
    Berry AE; Gardner MJ; Caspers GJ; Roos DS; Berriman M
    Trends Parasitol; 2004 Dec; 20(12):548-52. PubMed ID: 15522662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress in in silico functional genomics: the malaria Metabolic Pathways database.
    Ginsburg H
    Trends Parasitol; 2006 Jun; 22(6):238-40. PubMed ID: 16707276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of intracellular glutathione levels in erythrocytes infected with chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum.
    Meierjohann S; Walter RD; Müller S
    Biochem J; 2002 Dec; 368(Pt 3):761-8. PubMed ID: 12225291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network-based assessment of the selectivity of metabolic drug targets in Plasmodium falciparum with respect to human liver metabolism.
    Bazzani S; Hoppe A; Holzhütter HG
    BMC Syst Biol; 2012 Aug; 6():118. PubMed ID: 22937810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.