These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20805047)

  • 1. Volitional control of a prosthetic knee using surface electromyography.
    Ha KH; Varol HA; Goldfarb M
    IEEE Trans Biomed Eng; 2011 Jan; 58(1):144-51. PubMed ID: 20805047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myoelectric control of a powered knee prosthesis for volitional movement during non-weight-bearing activities.
    Ha KH; Varol HA; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3515-8. PubMed ID: 21097034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Source selection for real-time user intent recognition toward volitional control of artificial legs.
    Fan Zhang ; He Huang
    IEEE J Biomed Health Inform; 2013 Sep; 17(5):907-14. PubMed ID: 25055369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EMG control of a bionic knee prosthesis: exploiting muscle co-contractions for improved locomotor function.
    Dawley JA; Fite KB; Fulk GD
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650389. PubMed ID: 24187208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition.
    Zhang Y; Li P; Zhu X; Su SW; Guo Q; Xu P; Yao D
    PLoS One; 2017; 12(7):e0180526. PubMed ID: 28692691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis.
    Wang J; Kannape OA; Herr HM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650391. PubMed ID: 24187210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromuscular Activation of the Vastus Intermedius Muscle during Isometric Hip Flexion.
    Saito A; Akima H
    PLoS One; 2015; 10(10):e0141146. PubMed ID: 26488742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antagonist muscle coactivation during isokinetic knee extension.
    Aagaard P; Simonsen EB; Andersen JL; Magnusson SP; Bojsen-Møller F; Dyhre-Poulsen P
    Scand J Med Sci Sports; 2000 Apr; 10(2):58-67. PubMed ID: 10755275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Powered knee and ankle prosthesis with indirect volitional swing control enables level-ground walking and crossing over obstacles.
    Mendez J; Hood S; Gunnel A; Lenzi T
    Sci Robot; 2020 Jul; 5(44):. PubMed ID: 33022611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses.
    Zhang F; Liu M; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2768-71. PubMed ID: 23366499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of standing and sitting phases based on in-socket piezoelectric sensors in a transfemoral amputee.
    Yahya T; Hamzaid NA; Ali S; Jasni F; Shasmin HN
    Biomed Tech (Berl); 2020 Oct; 65(5):567-576. PubMed ID: 32459189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of long-term muscle disuse on neuromuscular function in unilateral transtibial amputees.
    Sibley AR; Strike S; Moudy SC; Tillin NA
    Exp Physiol; 2020 Mar; 105(3):408-418. PubMed ID: 31773821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promise of using surface EMG signals to volitionally control ankle joint position for powered transtibial prostheses.
    Chen B; Wang Q; Wang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2545-8. PubMed ID: 25570509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.
    Saito A; Akima H
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1406-12. PubMed ID: 24075525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of knee joint angle on the neuromuscular activation of the quadriceps femoris during repetitive fatiguing contractions.
    Akima H; Tomita A; Ando R
    J Electromyogr Kinesiol; 2019 Dec; 49():102356. PubMed ID: 31557704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angle- and velocity-specific alterations in torque and semg activity of the quadriceps and hamstrings during isokinetic extension-flexion movements.
    Croce RV; Miller JP
    Electromyogr Clin Neurophysiol; 2006; 46(2):83-100. PubMed ID: 16795998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of knee joint angle on neuromuscular activation of the vastus intermedius muscle during isometric contraction.
    Watanabe K; Akima H
    Scand J Med Sci Sports; 2011 Dec; 21(6):e412-20. PubMed ID: 21672026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biomechanical investigation of a single-limb squat: implications for lower extremity rehabilitation exercise.
    Richards J; Thewlis D; Selfe J; Cunningham A; Hayes C
    J Athl Train; 2008; 43(5):477-82. PubMed ID: 18833310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of electromyographic responses for the superficial quadriceps muscles: cycle versus knee-extensor ergometry.
    Malek MH; Coburn JW; Tedjasaputra V
    Muscle Nerve; 2009 Jun; 39(6):810-8. PubMed ID: 19301365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.