BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 20805555)

  • 1. Different aneuploidies arise from the same bridge-induced chromosomal translocation event in Saccharomyces cerevisiae.
    Rossi B; Noel P; Bruschi CV
    Genetics; 2010 Nov; 186(3):775-90. PubMed ID: 20805555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae.
    Tosato V; Sims J; West N; Colombin M; Bruschi CV
    Curr Genet; 2017 May; 63(2):281-292. PubMed ID: 27491680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin, Regulation, and Fitness Effect of Chromosomal Rearrangements in the Yeast
    Tang XX; Wen XP; Qi L; Sui Y; Zhu YX; Zheng DQ
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33466757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-reciprocal chromosomal bridge-induced translocation (BIT) by targeted DNA integration in yeast.
    Tosato V; Waghmare SK; Bruschi CV
    Chromosoma; 2005 May; 114(1):15-27. PubMed ID: 15843952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bridge-induced chromosome translocation in yeast relies upon a Rad54/Rdh54-dependent, Pol32-independent pathway.
    Tosato V; Sidari S; Bruschi CV
    PLoS One; 2013; 8(4):e60926. PubMed ID: 23613757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering evolution to study speciation in yeasts.
    Delneri D; Colson I; Grammenoudi S; Roberts IN; Louis EJ; Oliver SG
    Nature; 2003 Mar; 422(6927):68-72. PubMed ID: 12621434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains.
    Pérez-Ortín JE; Querol A; Puig S; Barrio E
    Genome Res; 2002 Oct; 12(10):1533-9. PubMed ID: 12368245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparative genetics of yeast Saccharomyces cerevisiae: chromosomal translocations carrying the SUC2 marker].
    Naumov GI; Naumova ES
    Genetika; 2011 Feb; 47(2):168-73. PubMed ID: 21516788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae.
    Dunham MJ; Badrane H; Ferea T; Adams J; Brown PO; Rosenzweig F; Botstein D
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16144-9. PubMed ID: 12446845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary biology: Speciation reversal.
    Wolfe K
    Nature; 2003 Mar; 422(6927):25-6. PubMed ID: 12621415
    [No Abstract]   [Full Text] [Related]  

  • 11. Formation of complex and unstable chromosomal translocations in yeast.
    Schmidt KH; Viebranz E; Doerfler L; Lester C; Rubenstein A
    PLoS One; 2010 Aug; 5(8):e12007. PubMed ID: 20711256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genome hybridization on tiling microarrays to detect aneuploidies in yeast.
    Dion B; Brown GW
    Methods Mol Biol; 2009; 548():1-18. PubMed ID: 19521816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast.
    Infante JJ; Dombek KM; Rebordinos L; Cantoral JM; Young ET
    Genetics; 2003 Dec; 165(4):1745-59. PubMed ID: 14704163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae as a model system to define the chromosomal instability phenotype.
    Putnam CD; Pennaneach V; Kolodner RD
    Mol Cell Biol; 2005 Aug; 25(16):7226-38. PubMed ID: 16055731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular and molecular effects of nonreciprocal chromosome translocations in Saccharomyces cerevisiae.
    Nikitin D; Tosato V; Zavec AB; Bruschi CV
    Proc Natl Acad Sci U S A; 2008 Jul; 105(28):9703-8. PubMed ID: 18599460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromosome translocation may lead to PRK1-dependent anticancer drug resistance in yeast via endocytic actin network deregulation.
    Nikitin DV; Bruschi CV; Sims J; Breitenbach M; Rinnerthaler M; Tosato V
    Eur J Cell Biol; 2014 Apr; 93(4):145-56. PubMed ID: 24846777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosomal rearrangements during vegetative growth of a wild strain of Saccharomyces cerevisiae.
    Longo E; Vezinhet F
    Appl Environ Microbiol; 1993 Jan; 59(1):322-6. PubMed ID: 8439158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA bridging of yeast chromosomes VIII leads to near-reciprocal translocation and loss of heterozygosity with minor cellular defects.
    Tosato V; Nicolini C; Bruschi CV
    Chromosoma; 2009 Apr; 118(2):179-91. PubMed ID: 19015868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated incidence of loss of heterozygosity (LOH) in an sgs1 mutant of Saccharomyces cerevisiae: roles of yeast RecQ helicase in suppression of aneuploidy, interchromosomal rearrangement, and the simultaneous incidence of both events during mitotic growth.
    Ajima J; Umezu K; Maki H
    Mutat Res; 2002 Jul; 504(1-2):157-72. PubMed ID: 12106656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic complexity and chromosomal rearrangements in wine-laboratory yeast hybrids.
    Ibeas JI; Jimenez J
    Curr Genet; 1996 Nov; 30(5):410-6. PubMed ID: 8929393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.