These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 20805575)

  • 1. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
    Bai Y; Li M; Hwang TC
    J Gen Physiol; 2010 Sep; 136(3):293-309. PubMed ID: 20805575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation.
    Gao X; Bai Y; Hwang TC
    Biophys J; 2013 Feb; 104(4):786-97. PubMed ID: 23442957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway.
    Zhang J; Hwang TC
    Biochemistry; 2015 Jun; 54(24):3839-50. PubMed ID: 26024338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel.
    El Hiani Y; Linsdell P
    J Biol Chem; 2010 Oct; 285(42):32126-40. PubMed ID: 20675380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel.
    El Hiani Y; Linsdell P
    J Biol Chem; 2014 Oct; 289(41):28149-59. PubMed ID: 25143385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric structure of the cystic fibrosis transmembrane conductance regulator chloride channel pore suggested by mutagenesis of the twelfth transmembrane region.
    Gupta J; Evagelidis A; Hanrahan JW; Linsdell P
    Biochemistry; 2001 Jun; 40(22):6620-7. PubMed ID: 11380256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore.
    Zhou JJ; Fatehi M; Linsdell P
    Pflugers Arch; 2008 Nov; 457(2):351-60. PubMed ID: 18449561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel.
    Aubin CN; Linsdell P
    J Gen Physiol; 2006 Nov; 128(5):535-45. PubMed ID: 17043152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects.
    Bompadre SG; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2007 Apr; 129(4):285-98. PubMed ID: 17353351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the juxtamembrane region of cytoplasmic loop 3 in the gating and conductance of the cystic fibrosis transmembrane conductance regulator chloride channel.
    El Hiani Y; Linsdell P
    Biochemistry; 2012 May; 51(19):3971-81. PubMed ID: 22545782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7).
    Bai Y; Li M; Hwang TC
    J Gen Physiol; 2011 Nov; 138(5):495-507. PubMed ID: 22042986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Wang W; El Hiani Y; Linsdell P
    J Gen Physiol; 2011 Aug; 138(2):165-78. PubMed ID: 21746847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines.
    Fatehi M; Linsdell P
    J Membr Biol; 2009 Apr; 228(3):151-64. PubMed ID: 19381710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating.
    Cui L; Aleksandrov L; Hou YX; Gentzsch M; Chen JH; Riordan JR; Aleksandrov AA
    J Physiol; 2006 Apr; 572(Pt 2):347-58. PubMed ID: 16484308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator.
    Akabas MH
    Biochemistry; 1998 Sep; 37(35):12233-40. PubMed ID: 9724537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore.
    El Hiani Y; Linsdell P
    J Biol Chem; 2015 Jun; 290(25):15855-15865. PubMed ID: 25944907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular cysteines of the cystic fibrosis transmembrane conductance regulator (CFTR) modulate channel gating.
    Ketchum CJ; Yue H; Alessi KA; Devidas S; Guggino WB; Maloney PC
    Cell Physiol Biochem; 2002; 12(1):1-8. PubMed ID: 11914543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating.
    Beck EJ; Yang Y; Yaemsiri S; Raghuram V
    J Biol Chem; 2008 Feb; 283(8):4957-66. PubMed ID: 18056267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters.
    Jordan IK; Kota KC; Cui G; Thompson CH; McCarty NA
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18865-70. PubMed ID: 19020075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative contribution of different transmembrane segments to the CFTR chloride channel pore.
    Wang W; El Hiani Y; Rubaiy HN; Linsdell P
    Pflugers Arch; 2014 Mar; 466(3):477-90. PubMed ID: 23955087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.