BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 20805577)

  • 1. Fatty acid modulation and polyamine block of GluK2 kainate receptors analyzed by scanning mutagenesis.
    Wilding TJ; Chen K; Huettner JE
    J Gen Physiol; 2010 Sep; 136(3):339-52. PubMed ID: 20805577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid substitutions in the pore helix of GluR6 control inhibition by membrane fatty acids.
    Wilding TJ; Fulling E; Zhou Y; Huettner JE
    J Gen Physiol; 2008 Jul; 132(1):85-99. PubMed ID: 18562501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Q/R site interactions with the M3 helix in GluK2 kainate receptor channels revealed by thermodynamic mutant cycles.
    Lopez MN; Wilding TJ; Huettner JE
    J Gen Physiol; 2013 Sep; 142(3):225-39. PubMed ID: 23940260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural similarities between glutamate receptor channels and K(+) channels examined by scanning mutagenesis.
    Panchenko VA; Glasser CR; Mayer ML
    J Gen Physiol; 2001 Apr; 117(4):345-60. PubMed ID: 11279254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Q/R site editing controls kainate receptor inhibition by membrane fatty acids.
    Wilding TJ; Zhou Y; Huettner JE
    J Neurosci; 2005 Oct; 25(41):9470-8. PubMed ID: 16221857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid substitutions in the pore of rat glutamate receptors at sites influencing block by polyamines.
    Panchenko VA; Glasser CR; Partin KM; Mayer ML
    J Physiol; 1999 Oct; 520 Pt 2(Pt 2):337-57. PubMed ID: 10523404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Block and modulation of N-methyl-D-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits.
    Kashiwagi K; Pahk AJ; Masuko T; Igarashi K; Williams K
    Mol Pharmacol; 1997 Oct; 52(4):701-13. PubMed ID: 9380034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of RNA editing and subunit co-assembly single-channel properties of recombinant kainate receptors.
    Swanson GT; Feldmeyer D; Kaneda M; Cull-Candy SG
    J Physiol; 1996 Apr; 492 ( Pt 1)(Pt 1):129-42. PubMed ID: 8730589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subunit-dependent modulation of kainate receptors by extracellular protons and polyamines.
    Mott DD; Washburn MS; Zhang S; Dingledine RJ
    J Neurosci; 2003 Feb; 23(4):1179-88. PubMed ID: 12598606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium opens GluK2 kainate receptors with cysteine substitutions at the M3 helix bundle crossing.
    Wilding TJ; Huettner JE
    J Gen Physiol; 2019 Apr; 151(4):435-451. PubMed ID: 30498132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological activity of C10-substituted analogs of the high-affinity kainate receptor agonist dysiherbaine.
    Lash-Van Wyhe LL; Postila PA; Tsubone K; Sasaki M; Pentikäinen OT; Sakai R; Swanson GT
    Neuropharmacology; 2010 Mar; 58(3):640-9. PubMed ID: 19962997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeation and block of rat GluR6 glutamate receptor channels by internal and external polyamines.
    Bähring R; Bowie D; Benveniste M; Mayer ML
    J Physiol; 1997 Aug; 502 ( Pt 3)(Pt 3):575-89. PubMed ID: 9279810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of amino acid residues that control functional behavior in GluR5 and GluR6 kainate receptors.
    Swanson GT; Gereau RW; Green T; Heinemann SF
    Neuron; 1997 Oct; 19(4):913-26. PubMed ID: 9354337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radial symmetry in a chimeric glutamate receptor pore.
    Wilding TJ; Lopez MN; Huettner JE
    Nat Commun; 2014; 5():3349. PubMed ID: 24561802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kainate receptor pore-forming and auxiliary subunits regulate channel block by a novel mechanism.
    Brown PM; Aurousseau MR; Musgaard M; Biggin PC; Bowie D
    J Physiol; 2016 Apr; 594(7):1821-40. PubMed ID: 26682513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atypical functional properties of GluK3-containing kainate receptors.
    Perrais D; Coussen F; Mulle C
    J Neurosci; 2009 Dec; 29(49):15499-510. PubMed ID: 20007474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for sequential ion-binding loci along the inner pore of the IRK1 inward-rectifier K+ channel.
    Shin HG; Xu Y; Lu Z
    J Gen Physiol; 2005 Aug; 126(2):123-35. PubMed ID: 16043774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heteromeric kainate receptors formed by the coassembly of GluR5, GluR6, and GluR7.
    Cui C; Mayer ML
    J Neurosci; 1999 Oct; 19(19):8281-91. PubMed ID: 10493729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of rat neuronal kainate receptors by cis-unsaturated fatty acids.
    Wilding TJ; Chai YH; Huettner JE
    J Physiol; 1998 Dec; 513 ( Pt 2)(Pt 2):331-9. PubMed ID: 9806986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate receptor trafficking: endoplasmic reticulum quality control involves ligand binding and receptor function.
    Mah SJ; Cornell E; Mitchell NA; Fleck MW
    J Neurosci; 2005 Mar; 25(9):2215-25. PubMed ID: 15745947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.