BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 20805986)

  • 1. Ecology and biogeography of free-living nematodes associated with chemosynthetic environments in the deep sea: a review.
    Vanreusel A; De Groote A; Gollner S; Bright M
    PLoS One; 2010 Aug; 5(8):e12449. PubMed ID: 20805986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic analysis reveals insights into deep-sea adaptations of the dominant species, Shinkaia crosnieri (Crustacea: Decapoda: Anomura), inhabiting both hydrothermal vents and cold seeps.
    Cheng J; Hui M; Sha Z
    BMC Genomics; 2019 May; 20(1):388. PubMed ID: 31103028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in taxonomy, ecology, and biogeography of Dirivultidae (copepoda) associated with chemosynthetic environments in the deep sea.
    Gollner S; Ivanenko VN; Arbizu PM; Bright M
    PLoS One; 2010 Aug; 5(8):e9801. PubMed ID: 20838422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The discovery of new deep-sea hydrothermal vent communities in the southern ocean and implications for biogeography.
    Rogers AD; Tyler PA; Connelly DP; Copley JT; James R; Larter RD; Linse K; Mills RA; Garabato AN; Pancost RD; Pearce DA; Polunin NV; German CR; Shank T; Boersch-Supan PH; Alker BJ; Aquilina A; Bennett SA; Clarke A; Dinley RJ; Graham AG; Green DR; Hawkes JA; Hepburn L; Hilario A; Huvenne VA; Marsh L; Ramirez-Llodra E; Reid WD; Roterman CN; Sweeting CJ; Thatje S; Zwirglmaier K
    PLoS Biol; 2012 Jan; 10(1):e1001234. PubMed ID: 22235194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do larval supply and recruitment vary among chemosynthetic environments of the deep sea?
    Metaxas A; Kelly NE
    PLoS One; 2010 Jul; 5(7):e11646. PubMed ID: 20657831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies.
    Glover AG; Gooday AJ; Bailey DM; Billett DS; Chevaldonné P; Colaço A; Copley J; Cuvelier D; Desbruyères D; Kalogeropoulou V; Klages M; Lampadariou N; Lejeusne C; Mestre NC; Paterson GL; Perez T; Ruhl H; Sarrazin J; Soltwedel T; Soto EH; Thatje S; Tselepides A; Van Gaever S; Vanreusel A
    Adv Mar Biol; 2010; 58():1-95. PubMed ID: 20959156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls.
    Bernardino AF; Levin LA; Thurber AR; Smith CR
    PLoS One; 2012; 7(4):e33515. PubMed ID: 22496753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.
    German CR; Ramirez-Llodra E; Baker MC; Tyler PA;
    PLoS One; 2011; 6(8):e23259. PubMed ID: 21829722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How deep-sea wood falls sustain chemosynthetic life.
    Bienhold C; Pop Ristova P; Wenzhöfer F; Dittmar T; Boetius A
    PLoS One; 2013; 8(1):e53590. PubMed ID: 23301092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contrasted evolutionary fates of deep-sea chemosynthetic mussels (Bivalvia, Bathymodiolinae).
    Thubaut J; Puillandre N; Faure B; Cruaud C; Samadi S
    Ecol Evol; 2013 Nov; 3(14):4748-66. PubMed ID: 24363902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodiversity on the Rocks: Macrofauna Inhabiting Authigenic Carbonate at Costa Rica Methane Seeps.
    Levin LA; Mendoza GF; Grupe BM; Gonzalez JP; Jellison B; Rouse G; Thurber AR; Waren A
    PLoS One; 2015; 10(7):e0131080. PubMed ID: 26158723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Six new species of free-living nematodes (Nematoda: Enoplida) from deep-sea cold seeps on Hikurangi Margin, New Zealand.
    Leduc D
    PeerJ; 2023; 11():e14867. PubMed ID: 36908816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food-Web Complexity in Guaymas Basin Hydrothermal Vents and Cold Seeps.
    Portail M; Olu K; Dubois SF; Escobar-Briones E; Gelinas Y; Menot L; Sarrazin J
    PLoS One; 2016; 11(9):e0162263. PubMed ID: 27683216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdistribution of faunal assemblages at deep-sea hydrothermal vents in the Southern Ocean.
    Marsh L; Copley JT; Huvenne VA; Linse K; Reid WD; Rogers AD; Sweeting CJ; Tyler PA
    PLoS One; 2012; 7(10):e48348. PubMed ID: 23144754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meiofauna and nematode community composition in a hydrothermal vent and deep-sea sediments in the Central Indian Ridge.
    Kang T; Kim D
    Mar Pollut Bull; 2021 Sep; 170():112616. PubMed ID: 34147859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and biogeography of deep-sea vent and seep invertebrates.
    Van Dover CL; German CR; Speer KG; Parson LM; Vrijenhoek RC
    Science; 2002 Feb; 295(5558):1253-7. PubMed ID: 11847331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macro-ecology of Gulf of Mexico cold seeps.
    Cordes EE; Bergquist DC; Fisher CR
    Ann Rev Mar Sci; 2009; 1():143-68. PubMed ID: 21141033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogeography and potential exchanges among the atlantic Equatorial belt cold-seep faunas.
    Olu K; Cordes EE; Fisher CR; Brooks JM; Sibuet M; Desbruyères D
    PLoS One; 2010 Aug; 5(8):e11967. PubMed ID: 20700528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Invertebrate population genetics across Earth's largest habitat: The deep-sea floor.
    Taylor ML; Roterman CN
    Mol Ecol; 2017 Oct; 26(19):4872-4896. PubMed ID: 28833857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.