BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 20805991)

  • 1. Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line.
    Close DM; Patterson SS; Ripp S; Baek SJ; Sanseverino J; Sayler GS
    PLoS One; 2010 Aug; 5(8):e12441. PubMed ID: 20805991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of a humanized viral 2A-mediated lux operon efficiently generates autonomous bioluminescence in human cells.
    Xu T; Ripp S; Sayler GS; Close DM
    PLoS One; 2014; 9(5):e96347. PubMed ID: 24788811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fre Is the Major Flavin Reductase Supporting Bioluminescence from Vibrio harveyi Luciferase in Escherichia coli.
    Campbell ZT; Baldwin TO
    J Biol Chem; 2009 Mar; 284(13):8322-8. PubMed ID: 19139094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase.
    Jawanda N; Ahmed K; Tu SC
    Biochemistry; 2008 Jan; 47(1):368-77. PubMed ID: 18067321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial bioluminescence: organization, regulation, and application of the lux genes.
    Meighen EA
    FASEB J; 1993 Aug; 7(11):1016-22. PubMed ID: 8370470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of the Photorhabdus luminescens lux genes (luxA, B, C, D, and E) in Saccharomyces cerevisiae.
    Gupta RK; Patterson SS; Ripp S; Simpson ML; Sayler GS
    FEMS Yeast Res; 2003 Dec; 4(3):305-13. PubMed ID: 14654435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transfer evidence for in vitro and in vivo complexes of Vibrio harveyi flavin reductase P and luciferase.
    Low JC; Tu SC
    Photochem Photobiol; 2003 Apr; 77(4):446-52. PubMed ID: 12733657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial bioluminescence: isolation and expression of the luciferase genes from Vibrio harveyi.
    Belas R; Mileham A; Cohn D; Hilman M; Simon M; Silverman M
    Science; 1982 Nov; 218(4574):791-3. PubMed ID: 10636771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Codon optimization of bacterial luciferase (lux) for expression in mammalian cells.
    Patterson SS; Dionisi HM; Gupta RK; Sayler GS
    J Ind Microbiol Biotechnol; 2005 Mar; 32(3):115-23. PubMed ID: 15761767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly bioluminescent Streptococcus thermophilus strain for the detection of diary-relevant antibiotics in milk.
    Jacobs MF; Tynkkynen S; Sibakov M
    Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):405-12. PubMed ID: 8597542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity coupling and complex formation between bacterial luciferase and flavin reductases.
    Tu SC
    Photochem Photobiol Sci; 2008 Feb; 7(2):183-8. PubMed ID: 18264585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of reduced flavin transfer from Vibrio harveyi NADPH-FMN oxidoreductase to luciferase.
    Lei B; Tu SC
    Biochemistry; 1998 Oct; 37(41):14623-9. PubMed ID: 9772191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ.
    Visick KL; Foster J; Doino J; McFall-Ngai M; Ruby EG
    J Bacteriol; 2000 Aug; 182(16):4578-86. PubMed ID: 10913092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation of bioluminescent reporters for use with mycobacteria.
    Andreu N; Zelmer A; Fletcher T; Elkington PT; Ward TH; Ripoll J; Parish T; Bancroft GJ; Schaible U; Robertson BD; Wiles S
    PLoS One; 2010 May; 5(5):e10777. PubMed ID: 20520722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Codon-optimized Luciola italica luciferase variants for mammalian gene expression in culture and in vivo.
    Maguire CA; van der Mijn JC; Degeling MH; Morse D; Tannous BA
    Mol Imaging; 2012 Feb; 11(1):13-21. PubMed ID: 22418023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Minimized Chemoenzymatic Cascade for Bacterial Luciferase in Bioreporter Applications.
    Phonbuppha J; Tinikul R; Wongnate T; Intasian P; Hollmann F; Paul CE; Chaiyen P
    Chembiochem; 2020 Jul; 21(14):2073-2079. PubMed ID: 32187433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Mechanisms of Bacterial Bioluminescence.
    Brodl E; Winkler A; Macheroux P
    Comput Struct Biotechnol J; 2018; 16():551-564. PubMed ID: 30546856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide sequence of the LuxC gene and the upstream DNA from the bioluminescent system of Vibrio harveyi.
    Miyamoto CM; Graham AF; Meighen EA
    Nucleic Acids Res; 1988 Feb; 16(4):1551-62. PubMed ID: 3347497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex formation between Vibrio harveyi luciferase and monomeric NADPH:FMN oxidoreductase.
    Jeffers CE; Nichols JC; Tu SC
    Biochemistry; 2003 Jan; 42(2):529-34. PubMed ID: 12525181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of LuxF on light intensity in bacterial bioluminescence.
    Brodl E; Csamay A; Horn C; Niederhauser J; Weber H; Macheroux P
    J Photochem Photobiol B; 2020 Jun; 207():111881. PubMed ID: 32325406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.