BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 20806081)

  • 1. X-ray induced cataract is preceded by LEC loss, and coincident with accumulation of cortical DNA, and ROS; similarities with age-related cataracts.
    Pendergrass W; Zitnik G; Tsai R; Wolf N
    Mol Vis; 2010 Aug; 16():1496-513. PubMed ID: 20806081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of DNA, nuclear and mitochondrial debris, and ROS at sites of age-related cortical cataract in mice.
    Pendergrass W; Penn P; Possin D; Wolf N
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4661-70. PubMed ID: 16303963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation cataracts: mechanisms involved in their long delayed occurrence but then rapid progression.
    Wolf N; Pendergrass W; Singh N; Swisshelm K; Schwartz J
    Mol Vis; 2008 Feb; 14():274-85. PubMed ID: 18334943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular debris and ROS in age-related cortical cataract are caused by inappropriate involution of the surface epithelial cells into the lens cortex.
    Pendergrass WR; Penn PE; Possin DE; Wolf NS
    Mol Vis; 2006 Jun; 12():712-24. PubMed ID: 16807531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related retention of fiber cell nuclei and nuclear fragments in the lens cortices of multiple species.
    Pendergrass W; Zitnik G; Urfer SR; Wolf N
    Mol Vis; 2011; 17():2672-84. PubMed ID: 22065920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological and cell volume changes in the rat lens during the formation of radiation cataracts.
    Zintz C; Beebe DC
    Exp Eye Res; 1986 Jan; 42(1):43-54. PubMed ID: 3956604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The unfolded protein response in lens epithelial cells from galactosemic rat lenses.
    Mulhern ML; Madson CJ; Danford A; Ikesugi K; Kador PF; Shinohara T
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):3951-9. PubMed ID: 16936110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple fixation and storage protocol for preserving the internal structure of intact human donor lenses and extracted human nuclear cataract specimens.
    Mohamed A; Gilliland KO; Metlapally S; Johnsen S; Costello MJ
    Mol Vis; 2013; 19():2352-9. PubMed ID: 24319329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lens epithelial apoptosis and cell proliferation in human age-related cortical cataract.
    Charakidas A; Kalogeraki A; Tsilimbaris M; Koukoulomatis P; Brouzas D; Delides G
    Eur J Ophthalmol; 2005; 15(2):213-20. PubMed ID: 15812762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification and protein distribution in a series of intracapsular cataracts.
    Zigman S; Schultz JB; Lowe K; Wolfe JK; Friend J
    Optom Vis Sci; 1993 Nov; 70(11):929-36. PubMed ID: 8302529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AlphaA-crystallin R49Cneo mutation influences the architecture of lens fiber cell membranes and causes posterior and nuclear cataracts in mice.
    Andley UP
    BMC Ophthalmol; 2009 Jul; 9():4. PubMed ID: 19619312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunohistochemical analysis of lens cells on formation of different types of age-related cataract in humans.
    Korsakova NV; Sergeeva VE; Petrov SB
    Neurosci Behav Physiol; 2008 Nov; 38(9):887-90. PubMed ID: 18975114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related nuclear cataract-oxidation is the key.
    Truscott RJ
    Exp Eye Res; 2005 May; 80(5):709-25. PubMed ID: 15862178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precataractous changes affect lens transparency in the selenite cataract.
    Hess JL; Mitton KP; Bunce GE
    Ophthalmic Res; 1996; 28 Suppl 2():45-53. PubMed ID: 8883089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The changes of 8-OHdG, hOGG1, APE1 and Pol β in lenses of patients with age-related cataract.
    Xu B; Kang L; Zhang G; Wu J; Zhu R; Yang M; Guan H
    Curr Eye Res; 2015 Apr; 40(4):378-85. PubMed ID: 24911554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimentally induced steroid cataract in the rat: a scanning electron microscopic study.
    Shui YB; Vrensen GF; Kojima M
    Surv Ophthalmol; 1997 Nov; 42 Suppl 1():S127-32. PubMed ID: 9603298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cataract formation in a strain of rats selected for high oxidative stress.
    Marsili S; Salganik RI; Albright CD; Freel CD; Johnsen S; Peiffer RL; Costello MJ
    Exp Eye Res; 2004 Nov; 79(5):595-612. PubMed ID: 15500819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H
    Hernebring M; Adelöf J; Wiseman J; Petersen A; Zetterberg M
    Exp Eye Res; 2021 Feb; 203():108395. PubMed ID: 33310056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topographical distribution of lactate dehydrogenase activity in human clear eye lenses and in lenses with different types of senile cataract: a histochemical investigation.
    Pau H; Hartwig HG; Fassbender R
    Graefes Arch Clin Exp Ophthalmol; 1997 Oct; 235(10):611-7. PubMed ID: 9349944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in the human lens: implications for cortical cataract formation.
    Sachdev NH; Di Girolamo N; Nolan TM; McCluskey PJ; Wakefield D; Coroneo MT
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4075-82. PubMed ID: 15505058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.