BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 20806081)

  • 21. Distribution of ferritin chains in canine lenses with and without age-related nuclear cataracts.
    Goralska M; Nagar S; Fleisher LN; McGahan MC
    Mol Vis; 2009 Nov; 15():2404-10. PubMed ID: 19956561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of advanced glycation end-products in diabetic and inherited canine cataracts.
    Bras ID; Colitz CM; Kusewitt DF; Chandler H; Lu P; Gemensky-Metzler AJ; Wilkie DA
    Graefes Arch Clin Exp Ophthalmol; 2007 Feb; 245(2):249-57. PubMed ID: 16896921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monitoring in vivo lens changes. A comparative study with biochemical analysis of protein aggregation.
    Mota MC; Ramalho JS; Carvalho P; Quadrado J; Baltar AS
    Doc Ophthalmol; 1992; 82(4):287-96. PubMed ID: 1306477
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Sorte Gawali KS; Jadhao AN
    Indian J Ophthalmol; 2023 Feb; 71(2):524-529. PubMed ID: 36727354
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies.
    Gilliland KO; Johnsen S; Metlapally S; Costello MJ; Ramamurthy B; Krishna PV; Balasubramanian D
    Mol Vis; 2008 Mar; 14():572-82. PubMed ID: 18385793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cortical and subcapsular cataracts: significance of physical forces.
    Pau H
    Ophthalmologica; 2006; 220(1):1-5. PubMed ID: 16374041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human age-related cataract and lens epithelial cell death.
    Harocopos GJ; Alvares KM; Kolker AE; Beebe DC
    Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2696-706. PubMed ID: 9856780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nuclear light scattering, disulfide formation and membrane damage in lenses of older guinea pigs treated with hyperbaric oxygen.
    Giblin FJ; Padgaonkar VA; Leverenz VR; Lin LR; Lou MF; Unakar NJ; Dang L; Dickerson JE; Reddy VN
    Exp Eye Res; 1995 Mar; 60(3):219-35. PubMed ID: 7789403
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative assessment of DNA damage directly in lens epithelial cells from senile cataract patients.
    Sorte K; Sune P; Bhake A; Shivkumar VB; Gangane N; Basak A
    Mol Vis; 2011 Jan; 17():1-6. PubMed ID: 21224996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The oxidative stress in the cataract formation].
    Obara Y
    Nippon Ganka Gakkai Zasshi; 1995 Dec; 99(12):1303-41. PubMed ID: 8571853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein profiles in cortical and nuclear regions of aged human donor lenses: A confocal Raman microspectroscopic and imaging study.
    Vrensen GFJM; Otto C; Lenferink A; Liszka B; Montenegro GA; Barraquer RI; Michael R
    Exp Eye Res; 2016 Apr; 145():100-109. PubMed ID: 26611157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo lens deficiency of the R49C alphaA-crystallin mutant.
    Andley UP; Reilly MA
    Exp Eye Res; 2010 Jun; 90(6):699-702. PubMed ID: 20188090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach.
    Su SP; McArthur JD; Andrew Aquilina J
    Exp Eye Res; 2010 Jul; 91(1):97-103. PubMed ID: 20433829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glutathione peroxidase-1 deficiency leads to increased nuclear light scattering, membrane damage, and cataract formation in gene-knockout mice.
    Reddy VN; Giblin FJ; Lin LR; Dang L; Unakar NJ; Musch DC; Boyle DL; Takemoto LJ; Ho YS; Knoernschild T; Juenemann A; Lütjen-Drecoll E
    Invest Ophthalmol Vis Sci; 2001 Dec; 42(13):3247-55. PubMed ID: 11726630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Further studies on the dynamic changes of glutathione and protein-thiol mixed disulfides in H2O2 induced cataract in rat lenses: distributions and effect of aging.
    Lou MF; Xu GT; Cui XL
    Curr Eye Res; 1995 Oct; 14(10):951-8. PubMed ID: 8549161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Induction of cortical cataracts in cultured mouse lenses with H-89, an inhibitor of protein kinase A.
    Calvin HI; Wu K; Li W; Guo L; Banerjee U; Fu SC
    Curr Eye Res; 2003 Nov; 27(5):269-78. PubMed ID: 14562163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Longitudinal Study of Age-Related Cataract Using Dynamic Light Scattering: Loss of α-Crystallin Leads to Nuclear Cataract Development.
    Datiles MB; Ansari RR; Yoshida J; Brown H; Zambrano AI; Tian J; Vitale S; Zigler JS; Ferris FL; West SK; Stark WJ
    Ophthalmology; 2016 Feb; 123(2):248-254. PubMed ID: 26545319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification.
    Sanderson J; Marcantonio JM; Duncan G
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts.
    Gilliland KO; Freel CD; Lane CW; Fowler WC; Costello MJ
    Mol Vis; 2001 Jun; 7():120-30. PubMed ID: 11435998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression changes in DNA repair enzymes and mitochondrial DNA damage in aging rat lens.
    Zhang Y; Zhang L; Zhang L; Bai J; Ge H; Liu P
    Mol Vis; 2010 Aug; 16():1754-63. PubMed ID: 20808729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.