These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 20806955)

  • 41. Assessing the polycyclic aromatic hydrocarbon anisotropic potential with application to the exfoliation energy of graphite.
    Totton TS; Misquitta AJ; Kraft M
    J Phys Chem A; 2011 Nov; 115(46):13684-93. PubMed ID: 21967093
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Imaginary vibrational modes in polycyclic aromatic hydrocarbons: a challenging test for the hardness profiles.
    Torrent-Sucarrat M; Geerlings P; Luis JM
    Chemphyschem; 2007 May; 8(7):1065-70. PubMed ID: 17315253
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The phototoxicity of polycyclic aromatic hydrocarbons: a theoretical study of excited states and correlation to experiment.
    Betowski LD; Enlow M; Riddick L
    Comput Chem; 2002 Jun; 26(4):371-7. PubMed ID: 12139420
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tuning aromaticity in trigonal alkaline earth metal clusters and their alkali metal salts.
    Jiménez-Halla JO; Matito E; Blancafort L; Robles J; Solà M
    J Comput Chem; 2009 Dec; 30(16):2764-76. PubMed ID: 19408281
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Strong correlation in acene sheets from the active-space variational two-electron reduced density matrix method: effects of symmetry and size.
    Pelzer K; Greenman L; Gidofalvi G; Mazziotti DA
    J Phys Chem A; 2011 Jun; 115(22):5632-40. PubMed ID: 21563790
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electron-accepting potential of solvents determines photolysis rates of polycyclic aromatic hydrocarbons: experimental and density functional theory study.
    Shao J; Chen J; Xie Q; Wang Y; Li X; Hao C
    J Hazard Mater; 2010 Jul; 179(1-3):173-7. PubMed ID: 20303660
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tautomerisation of thymine acts against the Hückel 4N + 2 rule. The effect of metal ions and H-bond complexations on the electronic structure of thymine.
    Stasyuk OA; Szatylowicz H; Krygowski TM
    Org Biomol Chem; 2014 Sep; 12(33):6476-83. PubMed ID: 25019208
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular dynamics simulations of electron-alkali cation pairs in bulk water.
    Coudert FX; Archirel P; Boutin A
    J Phys Chem B; 2006 Jan; 110(1):607-15. PubMed ID: 16471573
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electronic structure study of thermal intraconversions of some dicyclopenta-fused polycyclic aromatic compounds.
    Marković S; Stanković S; Radenković S; Gutman I
    J Chem Inf Model; 2008 Oct; 48(10):1984-9. PubMed ID: 18816023
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electronic spectra and ionization potentials of a stable class of closed shell polycyclic aromatic hydrocarbon cations.
    Weisman JL; Lee TJ; Head-Gordon M
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Mar; 57(4):931-45. PubMed ID: 11345264
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure and bonding of methyl alkali metal molecules.
    Bickelhaupt FM; Solà M; Fonseca Guerra C
    J Mol Model; 2006 Jul; 12(5):563-8. PubMed ID: 16411079
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Titanocene-Mediated Dinitrile Coupling: A Divergent Route to Nitrogen-Containing Polycyclic Aromatic Hydrocarbons.
    Kiel GR; Samkian AE; Nicolay A; Witzke RJ; Tilley TD
    J Am Chem Soc; 2018 Feb; 140(7):2450-2454. PubMed ID: 29383934
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A structure-based investigation on the binding interaction of hydroxylated polycyclic aromatic hydrocarbons with DNA.
    Wang LR; Wang Y; Chen JW; Guo LH
    Toxicology; 2009 Aug; 262(3):250-7. PubMed ID: 19559068
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Formation of polycyclic aromatic hydrocarbons from tobacco: the link between low temperature residual solid (char) and PAH formation.
    McGrath TE; Wooten JB; Geoffrey Chan W; Hajaligol MR
    Food Chem Toxicol; 2007 Jun; 45(6):1039-50. PubMed ID: 17303297
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Completing a family: LiCN3H4, the lightest alkali metal guanidinate.
    Sawinski PK; Deringer VL; Dronskowski R
    Dalton Trans; 2013 Nov; 42(42):15080-7. PubMed ID: 23999988
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure-activity relationships for flow cytometric data of smaller polycyclic aromatic hydrocarbons.
    Wan B; Sayler GS; Schultz TW
    SAR QSAR Environ Res; 2006 Dec; 17(6):597-605. PubMed ID: 17162389
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electronic and crystal engineering of acenes for solution-processible self-assembling organic semiconductors.
    Würthner F; Schmidt R
    Chemphyschem; 2006 Apr; 7(4):793-7. PubMed ID: 16528777
    [No Abstract]   [Full Text] [Related]  

  • 58. Non-covalent interactions of alkali metal cations with singly charged tryptic peptides.
    Rožman M; Gaskell SJ
    J Mass Spectrom; 2010 Dec; 45(12):1409-15. PubMed ID: 21031360
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cation-pi interactions with a model for the side chain of tryptophan: structures and absolute binding energies of alkali metal cation-indole complexes.
    Ruan C; Yang Z; Hallowita N; Rodgers MT
    J Phys Chem A; 2005 Dec; 109(50):11539-50. PubMed ID: 16354046
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bond-order discrimination by atomic force microscopy.
    Gross L; Mohn F; Moll N; Schuler B; Criado A; Guitián E; Peña D; Gourdon A; Meyer G
    Science; 2012 Sep; 337(6100):1326-9. PubMed ID: 22984067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.