BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20806976)

  • 1. Highly enantioselective catalytic dynamic resolution of N-Boc-2-lithiopiperidine: synthesis of (R)-(+)-N-Boc-pipecolic acid, (S)-(-)-coniine, (S)-(+)-pelletierine, (+)-beta-conhydrine, and (S)-(-)-ropivacaine and formal synthesis of (-)-lasubine II and (+)-cermizine C.
    Beng TK; Gawley RE
    J Am Chem Soc; 2010 Sep; 132(35):12216-7. PubMed ID: 20806976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of enantiopure substituted piperidines containing 2-alkene or 2-alkyne chains: application to total syntheses of natural quinolizidine-alkaloids.
    Cheng G; Wang X; Su D; Liu H; Liu F; Hu Y
    J Org Chem; 2010 Mar; 75(6):1911-6. PubMed ID: 20155953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of catalytic dynamic resolution of N-Boc-2-lithiopiperidine to the asymmetric synthesis of 2-aryl and 2-vinyl piperidines.
    Beng TK; Gawley RE
    Org Lett; 2011 Feb; 13(3):394-7. PubMed ID: 21174392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric substitutions of 2-lithiated N-boc-piperidine and N-Boc-azepine by dynamic resolution.
    Coldham I; Raimbault S; Whittaker DT; Chovatia PT; Leonori D; Patel JJ; Sheikh NS
    Chemistry; 2010 Apr; 16(13):4082-90. PubMed ID: 20175161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regioselective and stereoselective copper(I)-promoted allylation and conjugate addition of N-Boc-2-lithiopyrrolidine and N-Boc-2-lithiopiperidine.
    Coldham I; Leonori D
    J Org Chem; 2010 Jun; 75(12):4069-77. PubMed ID: 20469892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic applications and inversion dynamics of configurationally stable 2-lithio-2-arylpyrrolidines and -piperidines.
    Beng TK; Woo JS; Gawley RE
    J Am Chem Soc; 2012 Sep; 134(36):14764-71. PubMed ID: 22881214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective allylation of imines catalyzed by newly developed (-)-β-pinene-based π-allylpalladium catalyst: an efficient synthesis of (R)-α-propylpiperonylamine and (R)-pipecolic acid.
    Fernandes RA; Nallasivam JL
    Org Biomol Chem; 2012 Oct; 10(38):7789-800. PubMed ID: 22910971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic kinetic and kinetic resolution of N-Boc-2-lithiopiperidine.
    Coldham I; Patel JJ; Raimbault S; Whittaker DT
    Chem Commun (Camb); 2007 Nov; (43):4534-6. PubMed ID: 17971980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of catalytic resolution of 2-lithio-N-Boc-piperidine by ligand exchange.
    Beng TK; Tyree WS; Parker T; Su C; Williard PG; Gawley RE
    J Am Chem Soc; 2012 Oct; 134(40):16845-55. PubMed ID: 22967289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formal Synthesis of (+)-Lasubine II and (-)-Subcosine II via Organocatalytic Michael Addition of a Ketone to an α-Nitrostyrene.
    N V G M; Dyapa R; Pansare SV
    Org Lett; 2015 Nov; 17(21):5312-5. PubMed ID: 26492086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The barrier to enantiomerization and dynamic resolution of N-Boc-2-lithiopiperidine and the effect of TMEDA.
    Coldham I; Leonori D; Beng TK; Gawley RE
    Chem Commun (Camb); 2009 Sep; (35):5239-41. PubMed ID: 19707632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective methodologies for the synthesis of biologically active piperidinic compounds.
    Cossy J
    Chem Rec; 2005; 5(2):70-80. PubMed ID: 15825169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of (-)-deoxoprosophylline, (+)-2-epi-deoxoprosopinine, and (2R,3R)- and (2R,3S)-3-hydroxypipecolic acids from D-glycals.
    Kokatla HP; Lahiri R; Kancharla PK; Doddi VR; Vankar YD
    J Org Chem; 2010 Jul; 75(13):4608-11. PubMed ID: 20524655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly enantioselective synthesis of chiral cyclic amino alcohols and conhydrine by ruthenium-catalyzed asymmetric hydrogenation.
    Liu S; Xie JH; Li W; Kong WL; Wang LX; Zhou QL
    Org Lett; 2009 Nov; 11(21):4994-7. PubMed ID: 19788265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic applications of sulfur-substituted indolizidines and quinolizidines.
    Chou SS; Chung YC; Chen PA; Chiang SL; Wu CJ
    J Org Chem; 2011 Jan; 76(2):692-5. PubMed ID: 21162589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental and in situ IR spectroscopic study of the lithiation-substitution of N-Boc-2-phenylpyrrolidine and -piperidine: controlling the formation of quaternary stereocenters.
    Sheikh NS; Leonori D; Barker G; Firth JD; Campos KR; Meijer AJ; O'Brien P; Coldham I
    J Am Chem Soc; 2012 Mar; 134(11):5300-8. PubMed ID: 22339321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective approach to quinolizidines: total synthesis of cermizine D and formal syntheses of senepodine G and cermizine C.
    Veerasamy N; Carlson EC; Collett ND; Saha M; Carter RG
    J Org Chem; 2013 May; 78(10):4779-800. PubMed ID: 23627426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syntheses of (-)-pelletierine and (-)-homopipecolic acid.
    Chiou WH; Chen GT; Kao CL; Gao YK
    Org Biomol Chem; 2012 Apr; 10(13):2518-20. PubMed ID: 22349358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-step, formal [4 + 2] approach toward piperidin-4-ones via Au catalysis.
    Cui L; Peng Y; Zhang L
    J Am Chem Soc; 2009 Jun; 131(24):8394-5. PubMed ID: 19492799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved protocol for asymmetric, intramolecular heteroatom Michael addition using organocatalysis: enantioselective syntheses of homoproline, pelletierine, and homopipecolic acid.
    Carlson EC; Rathbone LK; Yang H; Collett ND; Carter RG
    J Org Chem; 2008 Jul; 73(13):5155-8. PubMed ID: 18529081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.