These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 20807555)
1. Sensitive immunoassay of Listeria monocytogenes with highly fluorescent bioconjugated silica nanoparticles probe. Wang Z; Miu T; Xu H; Duan N; Ding X; Li S J Microbiol Methods; 2010 Nov; 83(2):179-84. PubMed ID: 20807555 [TBL] [Abstract][Full Text] [Related]
2. Highly sensitive detection of Shigella flexneri using fluorescent silica nanoparticles. Li Y; Xu W New Microbiol; 2009 Oct; 32(4):377-83. PubMed ID: 20128444 [TBL] [Abstract][Full Text] [Related]
3. Sensitive and isothermal electrochemiluminescence gene-sensing of Listeria monocytogenes with hyperbranching rolling circle amplification technology. Long Y; Zhou X; Xing D Biosens Bioelectron; 2011 Feb; 26(6):2897-904. PubMed ID: 21183330 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of BBL CHROMagar Listeria agar for the isolation and identification of Listeria monocytogenes from food and environmental samples. Hegde V; Leon-Velarde CG; Stam CM; Jaykus LA; Odumeru JA J Microbiol Methods; 2007 Jan; 68(1):82-7. PubMed ID: 16930751 [TBL] [Abstract][Full Text] [Related]
5. Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. Yang H; Qu L; Wimbrow AN; Jiang X; Sun Y Int J Food Microbiol; 2007 Sep; 118(2):132-8. PubMed ID: 17716768 [TBL] [Abstract][Full Text] [Related]
6. A fluorescence immunoassay for a rapid detection of Listeria monocytogenes on working surfaces. Capo A; D'Auria S; Lacroix M Sci Rep; 2020 Dec; 10(1):21729. PubMed ID: 33303771 [TBL] [Abstract][Full Text] [Related]
7. A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Leonard P; Hearty S; Quinn J; O'Kennedy R Biosens Bioelectron; 2004 May; 19(10):1331-5. PubMed ID: 15046767 [TBL] [Abstract][Full Text] [Related]
8. Detection and quantification of Listeria monocytogenes by 5'-nuclease polymerase chain reaction targeting the actA gene. Oravcová K; Kaclíková E; Krascsenicsová K; Pangallo D; Brezná B; Siekel P; Kuchta T Lett Appl Microbiol; 2006 Jan; 42(1):15-8. PubMed ID: 16411913 [TBL] [Abstract][Full Text] [Related]
9. [Comparison of direct colony count methods and the MPN-method for quantitative detection of Listeria in model and field conditions]. Hildebrandt G; Schott W Berl Munch Tierarztl Wochenschr; 2001; 114(11-12):453-64. PubMed ID: 11766274 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of immunomagnetic separation in combination with ALOA Listeria chromogenic agar for the isolation and identification of Listeria monocytogenes in ready-to-eat foods. Wadud S; Leon-Velarde CG; Larson N; Odumeru JA J Microbiol Methods; 2010 May; 81(2):153-9. PubMed ID: 20211665 [TBL] [Abstract][Full Text] [Related]
11. Spontaneous bacterial peritonitis due to Listeria monocytogenes: importance of enrichment culture. Jayasinghe S; Connor M; Donaldson S; Austin H; Foster A J Clin Pathol; 2010 Sep; 63(9):835-6. PubMed ID: 20671045 [TBL] [Abstract][Full Text] [Related]
12. Limitation in the detection of Listeria monocytogenes in food in the presence of competing Listeria innocua. Oravcová K; Trncíková T; Kuchta T; Kaclíková E J Appl Microbiol; 2008 Feb; 104(2):429-37. PubMed ID: 17887983 [TBL] [Abstract][Full Text] [Related]
13. Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target. O' Grady J; Sedano-Balbás S; Maher M; Smith T; Barry T Food Microbiol; 2008 Feb; 25(1):75-84. PubMed ID: 17993379 [TBL] [Abstract][Full Text] [Related]
14. Ferrocenyl-doped silica nanoparticles as an immobilized affinity support for electrochemical immunoassay of cancer antigen 15-3. Hong C; Yuan R; Chai Y; Zhuo Y Anal Chim Acta; 2009 Feb; 633(2):244-9. PubMed ID: 19166729 [TBL] [Abstract][Full Text] [Related]
15. Sensitive colorimetric detection of Listeria monocytogenes based on isothermal gene amplification and unmodified gold nanoparticles. Fu Z; Zhou X; Xing D Methods; 2013 Dec; 64(3):260-6. PubMed ID: 23948710 [TBL] [Abstract][Full Text] [Related]
16. Visual and sensitive detection of viable pathogenic bacteria by sensing of RNA markers in gold nanoparticles based paper platform. Liu H; Zhan F; Liu F; Zhu M; Zhou X; Xing D Biosens Bioelectron; 2014 Dec; 62():38-46. PubMed ID: 24973541 [TBL] [Abstract][Full Text] [Related]
17. Lessons from the organization of a proficiency testing program in food microbiology by interlaboratory comparison: analytical methods in use, impact of methods on bacterial counts and measurement uncertainty of bacterial counts. Augustin JC; Carlier V Food Microbiol; 2006 Feb; 23(1):1-38. PubMed ID: 16942983 [TBL] [Abstract][Full Text] [Related]
18. Culture confirmation of Listeria monocytogenes using tmRNA as a diagnostics target. Clancy E; Glynn B; Reddington K; Smith T; Barry T J Microbiol Methods; 2012 Mar; 88(3):427-9. PubMed ID: 22261139 [TBL] [Abstract][Full Text] [Related]
19. Validation of NMKL method No. 136--Listeria monocytogenes, detection and enumeration in foods and feed. Loncarevic S; Økland M; Sehic E; Norli HS; Johansson T Int J Food Microbiol; 2008 May; 124(2):154-63. PubMed ID: 18472176 [TBL] [Abstract][Full Text] [Related]
20. Rapid detection of Listeria monocytogenes in foods, by a combination of PCR and DNA probe. Ingianni A; Floris M; Palomba P; Madeddu MA; Quartuccio M; Pompei R Mol Cell Probes; 2001 Oct; 15(5):275-80. PubMed ID: 11735299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]