These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 20807595)
1. Role of wettability and nanoroughness on interactions between osteoblast and modified silicon surfaces. Padial-Molina M; Galindo-Moreno P; Fernández-Barbero JE; O'Valle F; Jódar-Reyes AB; Ortega-Vinuesa JL; Ramón-Torregrosa PJ Acta Biomater; 2011 Feb; 7(2):771-8. PubMed ID: 20807595 [TBL] [Abstract][Full Text] [Related]
2. The behavior of MC3T3-E1 cells on chitosan/poly-L-lysine composite films: effect of nanotopography, surface chemistry, and wettability. Zheng Z; Zhang L; Kong L; Wang A; Gong Y; Zhang X J Biomed Mater Res A; 2009 May; 89(2):453-65. PubMed ID: 18431777 [TBL] [Abstract][Full Text] [Related]
3. The impact of diamond nanocrystallinity on osteoblast functions. Yang L; Sheldon BW; Webster TJ Biomaterials; 2009 Jul; 30(20):3458-65. PubMed ID: 19339049 [TBL] [Abstract][Full Text] [Related]
4. Nanoscaled periodic surface structures of medical stainless steel and their effect on osteoblast cells. Elter P; Sickel F; Ewald A Acta Biomater; 2009 Jun; 5(5):1468-73. PubMed ID: 19250893 [TBL] [Abstract][Full Text] [Related]
5. Orthopedic nano diamond coatings: control of surface properties and their impact on osteoblast adhesion and proliferation. Yang L; Sheldon BW; Webster TJ J Biomed Mater Res A; 2009 Nov; 91(2):548-56. PubMed ID: 18985788 [TBL] [Abstract][Full Text] [Related]
6. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes. Lee SJ; Choi JS; Park KS; Khang G; Lee YM; Lee HB Biomaterials; 2004 Aug; 25(19):4699-707. PubMed ID: 15120516 [TBL] [Abstract][Full Text] [Related]
7. Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite. Bodhak S; Bose S; Bandyopadhyay A Acta Biomater; 2009 Jul; 5(6):2178-88. PubMed ID: 19303377 [TBL] [Abstract][Full Text] [Related]
8. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Khang D; Lu J; Yao C; Haberstroh KM; Webster TJ Biomaterials; 2008 Mar; 29(8):970-83. PubMed ID: 18096222 [TBL] [Abstract][Full Text] [Related]
9. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. Dowling DP; Miller IS; Ardhaoui M; Gallagher WM J Biomater Appl; 2011 Sep; 26(3):327-47. PubMed ID: 20566655 [TBL] [Abstract][Full Text] [Related]
10. Structure, cell response and biomimetic apatite induction of gradient TiO2-based/nano-scale hydrophilic amorphous titanium oxide containing Ca composite coatings before and after crystallization. Wei D; Zhou Y; Yang C Colloids Surf B Biointerfaces; 2009 Nov; 74(1):230-7. PubMed ID: 19683901 [TBL] [Abstract][Full Text] [Related]
11. Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. Kim SH; Ha HJ; Ko YK; Yoon SJ; Rhee JM; Kim MS; Lee HB; Khang G J Biomater Sci Polym Ed; 2007; 18(5):609-22. PubMed ID: 17550662 [TBL] [Abstract][Full Text] [Related]
13. The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces. Miyauchi T; Yamada M; Yamamoto A; Iwasa F; Suzawa T; Kamijo R; Baba K; Ogawa T Biomaterials; 2010 May; 31(14):3827-39. PubMed ID: 20153521 [TBL] [Abstract][Full Text] [Related]
14. Incorporation of Si and SiO(x) into diamond-like carbon films: impact on surface properties and osteoblast adhesion. Randeniya LK; Bendavid A; Martin PJ; Amin MS; Preston EW; Magdon Ismail FS; Coe S Acta Biomater; 2009 Jun; 5(5):1791-7. PubMed ID: 19233753 [TBL] [Abstract][Full Text] [Related]
15. Differential response of Staphylococci and osteoblasts to varying titanium surface roughness. Wu Y; Zitelli JP; TenHuisen KS; Yu X; Libera MR Biomaterials; 2011 Feb; 32(4):951-60. PubMed ID: 20974493 [TBL] [Abstract][Full Text] [Related]
16. In vitro osteoblast-like cell proliferation on nano-hydroxyapatite coatings with different morphologies on a titanium-niobium shape memory alloy. Xiong J; Li Y; Hodgson PD; Wen C J Biomed Mater Res A; 2010 Dec; 95(3):766-73. PubMed ID: 20725978 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of mammalian cell adhesion on surface-modified porous silicon. Low SP; Williams KA; Canham LT; Voelcker NH Biomaterials; 2006 Sep; 27(26):4538-46. PubMed ID: 16707158 [TBL] [Abstract][Full Text] [Related]
19. Surface engineering of titanium thin films with silk fibroin via layer-by-layer technique and its effects on osteoblast growth behavior. Cai K; Hu Y; Jandt KD J Biomed Mater Res A; 2007 Sep; 82(4):927-35. PubMed ID: 17335030 [TBL] [Abstract][Full Text] [Related]
20. Effects of fluoride-modified titanium surfaces on osteoblast proliferation and gene expression. Isa ZM; Schneider GB; Zaharias R; Seabold D; Stanford CM Int J Oral Maxillofac Implants; 2006; 21(2):203-11. PubMed ID: 16634490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]