BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20807595)

  • 1. Role of wettability and nanoroughness on interactions between osteoblast and modified silicon surfaces.
    Padial-Molina M; Galindo-Moreno P; Fernández-Barbero JE; O'Valle F; Jódar-Reyes AB; Ortega-Vinuesa JL; Ramón-Torregrosa PJ
    Acta Biomater; 2011 Feb; 7(2):771-8. PubMed ID: 20807595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The behavior of MC3T3-E1 cells on chitosan/poly-L-lysine composite films: effect of nanotopography, surface chemistry, and wettability.
    Zheng Z; Zhang L; Kong L; Wang A; Gong Y; Zhang X
    J Biomed Mater Res A; 2009 May; 89(2):453-65. PubMed ID: 18431777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of diamond nanocrystallinity on osteoblast functions.
    Yang L; Sheldon BW; Webster TJ
    Biomaterials; 2009 Jul; 30(20):3458-65. PubMed ID: 19339049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscaled periodic surface structures of medical stainless steel and their effect on osteoblast cells.
    Elter P; Sickel F; Ewald A
    Acta Biomater; 2009 Jun; 5(5):1468-73. PubMed ID: 19250893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthopedic nano diamond coatings: control of surface properties and their impact on osteoblast adhesion and proliferation.
    Yang L; Sheldon BW; Webster TJ
    J Biomed Mater Res A; 2009 Nov; 91(2):548-56. PubMed ID: 18985788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes.
    Lee SJ; Choi JS; Park KS; Khang G; Lee YM; Lee HB
    Biomaterials; 2004 Aug; 25(19):4699-707. PubMed ID: 15120516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite.
    Bodhak S; Bose S; Bandyopadhyay A
    Acta Biomater; 2009 Jul; 5(6):2178-88. PubMed ID: 19303377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium.
    Khang D; Lu J; Yao C; Haberstroh KM; Webster TJ
    Biomaterials; 2008 Mar; 29(8):970-83. PubMed ID: 18096222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene.
    Dowling DP; Miller IS; Ardhaoui M; Gallagher WM
    J Biomater Appl; 2011 Sep; 26(3):327-47. PubMed ID: 20566655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, cell response and biomimetic apatite induction of gradient TiO2-based/nano-scale hydrophilic amorphous titanium oxide containing Ca composite coatings before and after crystallization.
    Wei D; Zhou Y; Yang C
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):230-7. PubMed ID: 19683901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability.
    Kim SH; Ha HJ; Ko YK; Yoon SJ; Rhee JM; Kim MS; Lee HB; Khang G
    J Biomater Sci Polym Ed; 2007; 18(5):609-22. PubMed ID: 17550662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attachment of human primary osteoblast cells to modified polyethylene surfaces.
    Poulsson AH; Mitchell SA; Davidson MR; Johnstone AJ; Emmison N; Bradley RH
    Langmuir; 2009 Apr; 25(6):3718-27. PubMed ID: 19275183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces.
    Miyauchi T; Yamada M; Yamamoto A; Iwasa F; Suzawa T; Kamijo R; Baba K; Ogawa T
    Biomaterials; 2010 May; 31(14):3827-39. PubMed ID: 20153521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of Si and SiO(x) into diamond-like carbon films: impact on surface properties and osteoblast adhesion.
    Randeniya LK; Bendavid A; Martin PJ; Amin MS; Preston EW; Magdon Ismail FS; Coe S
    Acta Biomater; 2009 Jun; 5(5):1791-7. PubMed ID: 19233753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential response of Staphylococci and osteoblasts to varying titanium surface roughness.
    Wu Y; Zitelli JP; TenHuisen KS; Yu X; Libera MR
    Biomaterials; 2011 Feb; 32(4):951-60. PubMed ID: 20974493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro osteoblast-like cell proliferation on nano-hydroxyapatite coatings with different morphologies on a titanium-niobium shape memory alloy.
    Xiong J; Li Y; Hodgson PD; Wen C
    J Biomed Mater Res A; 2010 Dec; 95(3):766-73. PubMed ID: 20725978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of mammalian cell adhesion on surface-modified porous silicon.
    Low SP; Williams KA; Canham LT; Voelcker NH
    Biomaterials; 2006 Sep; 27(26):4538-46. PubMed ID: 16707158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact angle hysteresis on regular pillar-like hydrophobic surfaces.
    Yeh KY; Chen LJ; Chang JY
    Langmuir; 2008 Jan; 24(1):245-51. PubMed ID: 18067331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface engineering of titanium thin films with silk fibroin via layer-by-layer technique and its effects on osteoblast growth behavior.
    Cai K; Hu Y; Jandt KD
    J Biomed Mater Res A; 2007 Sep; 82(4):927-35. PubMed ID: 17335030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of fluoride-modified titanium surfaces on osteoblast proliferation and gene expression.
    Isa ZM; Schneider GB; Zaharias R; Seabold D; Stanford CM
    Int J Oral Maxillofac Implants; 2006; 21(2):203-11. PubMed ID: 16634490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.