BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 20807644)

  • 1. Roles of heparan sulfate in mammalian brain development current views based on the findings from Ext1 conditional knockout studies.
    Yamaguchi Y; Inatani M; Matsumoto Y; Ogawa J; Irie F
    Prog Mol Biol Transl Sci; 2010; 93():133-52. PubMed ID: 20807644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mammalian brain morphogenesis and midline axon guidance require heparan sulfate.
    Inatani M; Irie F; Plump AS; Tessier-Lavigne M; Yamaguchi Y
    Science; 2003 Nov; 302(5647):1044-6. PubMed ID: 14605369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of heparan sulfate in EXT1-deficient cells.
    Okada M; Nadanaka S; Shoji N; Tamura J; Kitagawa H
    Biochem J; 2010 May; 428(3):463-71. PubMed ID: 20377530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pathogenic roles of heparan sulfate deficiency in hereditary multiple exostoses.
    Pacifici M
    Matrix Biol; 2018 Oct; 71-72():28-39. PubMed ID: 29277722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression of EXT1 and EXT2 during mouse brain development.
    Inatani M; Yamaguchi Y
    Brain Res Dev Brain Res; 2003 Mar; 141(1-2):129-36. PubMed ID: 12644256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Heparan sulfate, an essential of CNS development].
    Inatani M; Yamaguchi Y
    Tanpakushitsu Kakusan Koso; 2004 Nov; 49(15 Suppl):2369-75. PubMed ID: 15552988
    [No Abstract]   [Full Text] [Related]  

  • 7. Epigenetic loss of the familial tumor-suppressor gene exostosin-1 (EXT1) disrupts heparan sulfate synthesis in cancer cells.
    Ropero S; Setien F; Espada J; Fraga MF; Herranz M; Asp J; Benassi MS; Franchi A; Patiño A; Ward LS; Bovee J; Cigudosa JC; Wim W; Esteller M
    Hum Mol Genet; 2004 Nov; 13(22):2753-65. PubMed ID: 15385438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heparan sulphate biosynthesis and disease.
    Nadanaka S; Kitagawa H
    J Biochem; 2008 Jul; 144(1):7-14. PubMed ID: 18367479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EXT1 regulates chondrocyte proliferation and differentiation during endochondral bone development.
    Hilton MJ; Gutiérrez L; Martinez DA; Wells DE
    Bone; 2005 Mar; 36(3):379-86. PubMed ID: 15777636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation-induced loss of heparan sulfate in human exostosis derived chondrocytes.
    Hecht JT; Hayes E; Haynes R; Cole WG; Long RJ; Farach-Carson MC; Carson DD
    Differentiation; 2005 Jun; 73(5):212-21. PubMed ID: 16026543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The exostosin family: proteins with many functions.
    Busse-Wicher M; Wicher KB; Kusche-Gullberg M
    Matrix Biol; 2014 Apr; 35():25-33. PubMed ID: 24128412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heparan Sulfate Biosynthesis Enzyme, Ext1, Contributes to Outflow Tract Development of Mouse Heart via Modulation of FGF Signaling.
    Zhang R; Cao P; Yang Z; Wang Z; Wu JL; Chen Y; Pan Y
    PLoS One; 2015; 10(8):e0136518. PubMed ID: 26295701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of EXT1 and EXT2, hereditary multiple exostoses gene products, in Golgi apparatus.
    Kobayashi S; Morimoto K; Shimizu T; Takahashi M; Kurosawa H; Shirasawa T
    Biochem Biophys Res Commun; 2000 Feb; 268(3):860-7. PubMed ID: 10679296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hereditary multiple exostoses and heparan sulfate polymerization.
    Zak BM; Crawford BE; Esko JD
    Biochim Biophys Acta; 2002 Dec; 1573(3):346-55. PubMed ID: 12417417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode alpha 1,4- N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/ heparin biosynthesis.
    Kim BT; Kitagawa H; Tamura J; Saito T; Kusche-Gullberg M; Lindahl U; Sugahara K
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7176-81. PubMed ID: 11390981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perichondrium phenotype and border function are regulated by Ext1 and heparan sulfate in developing long bones: a mechanism likely deranged in Hereditary Multiple Exostoses.
    Huegel J; Mundy C; Sgariglia F; Nygren P; Billings PC; Yamaguchi Y; Koyama E; Pacifici M
    Dev Biol; 2013 May; 377(1):100-12. PubMed ID: 23458899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate.
    McCormick C; Leduc Y; Martindale D; Mattison K; Esford LE; Dyer AP; Tufaro F
    Nat Genet; 1998 Jun; 19(2):158-61. PubMed ID: 9620772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EXT genes are differentially expressed in bone and cartilage during mouse embryogenesis.
    Stickens D; Brown D; Evans GA
    Dev Dyn; 2000 Jul; 218(3):452-64. PubMed ID: 10878610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heparan sulfate deficiency in periocular mesenchyme causes microphthalmia and ciliary body dysgenesis.
    Iwao K; Inatani M; Ogata-Iwao M; Yamaguchi Y; Okinami S; Tanihara H
    Exp Eye Res; 2010 Jan; 90(1):81-8. PubMed ID: 19782070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation in the heparan sulfate biosynthesis enzyme EXT1 influences growth factor signaling and fibroblast interactions with the extracellular matrix.
    Osterholm C; Barczyk MM; Busse M; Grønning M; Reed RK; Kusche-Gullberg M
    J Biol Chem; 2009 Dec; 284(50):34935-43. PubMed ID: 19850926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.