BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 20807644)

  • 21. Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice.
    Lin X; Wei G; Shi Z; Dryer L; Esko JD; Wells DE; Matzuk MM
    Dev Biol; 2000 Aug; 224(2):299-311. PubMed ID: 10926768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate.
    Lind T; Tufaro F; McCormick C; Lindahl U; Lidholt K
    J Biol Chem; 1998 Oct; 273(41):26265-8. PubMed ID: 9756849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiple roles of epithelial heparan sulfate in stomach morphogenesis.
    Huang M; He H; Belenkaya T; Lin X
    J Cell Sci; 2018 May; 131(10):. PubMed ID: 29700203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular analysis of heparan sulfate biosynthetic enzyme machinery and characterization of heparan sulfate structure in Nematostella vectensis.
    Feta A; Do AT; Rentzsch F; Technau U; Kusche-Gullberg M
    Biochem J; 2009 May; 419(3):585-93. PubMed ID: 19170656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conditional gene targeting in the mouse nervous system: Insights into brain function and diseases.
    Gavériaux-Ruff C; Kieffer BL
    Pharmacol Ther; 2007 Mar; 113(3):619-34. PubMed ID: 17289150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heparan sulfate in skeletal development, growth, and pathology: the case of hereditary multiple exostoses.
    Huegel J; Sgariglia F; Enomoto-Iwamoto M; Koyama E; Dormans JP; Pacifici M
    Dev Dyn; 2013 Sep; 242(9):1021-32. PubMed ID: 23821404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct tissue-specificity of three zebrafish ext1 genes encoding proteoglycan modifying enzymes and their relationship to somitic Sonic hedgehog signaling.
    Siekmann AF; Brand M
    Dev Dyn; 2005 Feb; 232(2):498-505. PubMed ID: 15614771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tinkering with heparan sulfate sulfation to steer development.
    Gorsi B; Stringer SE
    Trends Cell Biol; 2007 Apr; 17(4):173-7. PubMed ID: 17320398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Opposing functions of chondroitin sulfate and heparan sulfate during early neuronal polarization.
    Nishimura K; Ishii M; Kuraoka M; Kamimura K; Maeda N
    Neuroscience; 2010 Sep; 169(4):1535-47. PubMed ID: 20600662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reevaluation of a genetic model for the development of exostosis in hereditary multiple exostosis.
    Hall CR; Cole WG; Haynes R; Hecht JT
    Am J Med Genet; 2002 Sep; 112(1):1-5. PubMed ID: 12239711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression and functional analysis of mouse EXT1, a homolog of the human multiple exostoses type 1 gene.
    Lin X; Gan L; Klein WH; Wells D
    Biochem Biophys Res Commun; 1998 Jul; 248(3):738-43. PubMed ID: 9703997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The link between heparan sulfate and hereditary bone disease: finding a function for the EXT family of putative tumor suppressor proteins.
    Duncan G; McCormick C; Tufaro F
    J Clin Invest; 2001 Aug; 108(4):511-6. PubMed ID: 11518722
    [No Abstract]   [Full Text] [Related]  

  • 33. Heparan sulfate as a therapeutic target in amyloidogenesis: prospects and possible complications.
    Kisilevsky R; Ancsin JB; Szarek WA; Petanceska S
    Amyloid; 2007 Mar; 14(1):21-32. PubMed ID: 17453622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Herpes simplex virus: discovering the link between heparan sulphate and hereditary bone tumours.
    McCormick C; Duncan G; Tufaro F
    Rev Med Virol; 2000; 10(6):373-84. PubMed ID: 11114076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developmental and regional expression of heparan sulfate sulfotransferase genes in the mouse brain.
    Yabe T; Hata T; He J; Maeda N
    Glycobiology; 2005 Oct; 15(10):982-93. PubMed ID: 15944372
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decreased EXT expression and intracellular accumulation of heparan sulphate proteoglycan in osteochondromas and peripheral chondrosarcomas.
    Hameetman L; David G; Yavas A; White SJ; Taminiau AH; Cleton-Jansen AM; Hogendoorn PC; Bovée JV
    J Pathol; 2007 Mar; 211(4):399-409. PubMed ID: 17226760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conditional ablation of the heparan sulfate-synthesizing enzyme Ext1 leads to dysregulation of bone morphogenic protein signaling and severe skeletal defects.
    Matsumoto Y; Matsumoto K; Irie F; Fukushi J; Stallcup WB; Yamaguchi Y
    J Biol Chem; 2010 Jun; 285(25):19227-34. PubMed ID: 20404326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine.
    Mundy C; Yasuda T; Kinumatsu T; Yamaguchi Y; Iwamoto M; Enomoto-Iwamoto M; Koyama E; Pacifici M
    Dev Biol; 2011 Mar; 351(1):70-81. PubMed ID: 21185280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Association of autism in two patients with hereditary multiple exostoses caused by novel deletion mutations of EXT1.
    Li H; Yamagata T; Mori M; Momoi MY
    J Hum Genet; 2002; 47(5):262-5. PubMed ID: 12032595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NDST1-dependent heparan sulfate regulates BMP signaling and internalization in lung development.
    Hu Z; Wang C; Xiao Y; Sheng N; Chen Y; Xu Y; Zhang L; Mo W; Jing N; Hu G
    J Cell Sci; 2009 Apr; 122(Pt 8):1145-54. PubMed ID: 19299468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.