These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 20807767)
1. Joint functions of protein residues and NADP(H) in oxygen activation by flavin-containing monooxygenase. Orru R; Pazmiño DE; Fraaije MW; Mattevi A J Biol Chem; 2010 Nov; 285(45):35021-8. PubMed ID: 20807767 [TBL] [Abstract][Full Text] [Related]
2. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors. Murataliev MB; Feyereisen R Biochemistry; 2000 Oct; 39(41):12699-707. PubMed ID: 11027150 [TBL] [Abstract][Full Text] [Related]
3. Role of Ser-257 in the sliding mechanism of NADP(H) in the reaction catalyzed by the Aspergillus fumigatus flavin-dependent ornithine N5-monooxygenase SidA. Shirey C; Badieyan S; Sobrado P J Biol Chem; 2013 Nov; 288(45):32440-32448. PubMed ID: 24072704 [TBL] [Abstract][Full Text] [Related]
4. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O; Scrutton NS; Munro AW Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506 [TBL] [Abstract][Full Text] [Related]
5. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA. Robinson R; Franceschini S; Fedkenheuer M; Rodriguez PJ; Ellerbrock J; Romero E; Echandi MP; Martin Del Campo JS; Sobrado P Biochim Biophys Acta; 2014 Apr; 1844(4):778-84. PubMed ID: 24534646 [TBL] [Abstract][Full Text] [Related]
6. Structural analyses of the Group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations. Manenda MS; Picard MÈ; Zhang L; Cyr N; Zhu X; Barma J; Pascal JM; Couture M; Zhang C; Shi R J Biol Chem; 2020 Apr; 295(14):4709-4722. PubMed ID: 32111738 [TBL] [Abstract][Full Text] [Related]
7. Contribution to catalysis of ornithine binding residues in ornithine N5-monooxygenase. Robinson R; Qureshi IA; Klancher CA; Rodriguez PJ; Tanner JJ; Sobrado P Arch Biochem Biophys; 2015 Nov; 585():25-31. PubMed ID: 26375201 [TBL] [Abstract][Full Text] [Related]
9. The devil is in the details: The chemical basis and mechanistic versatility of flavoprotein monooxygenases. Toplak M; Matthews A; Teufel R Arch Biochem Biophys; 2021 Feb; 698():108732. PubMed ID: 33358998 [TBL] [Abstract][Full Text] [Related]
11. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases. Ballou DP; Entsch B; Cole LJ Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251 [TBL] [Abstract][Full Text] [Related]
12. Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms. Thotsaporn K; Chenprakhon P; Sucharitakul J; Mattevi A; Chaiyen P J Biol Chem; 2011 Aug; 286(32):28170-80. PubMed ID: 21680741 [TBL] [Abstract][Full Text] [Related]
13. Speeding up the product release: a second-sphere contribution from Tyr191 to the reactivity of L-lactate oxidase revealed in crystallographic and kinetic studies of site-directed variants. Stoisser T; Klimacek M; Wilson DK; Nidetzky B FEBS J; 2015 Nov; 282(21):4130-40. PubMed ID: 26260739 [TBL] [Abstract][Full Text] [Related]
14. Monitoring the reductive and oxidative half-reactions of a flavin-dependent monooxygenase using stopped-flow spectrophotometry. Romero E; Robinson R; Sobrado P J Vis Exp; 2012 Mar; (61):. PubMed ID: 22453826 [TBL] [Abstract][Full Text] [Related]
15. C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADP⁺. Robinson R; Badieyan S; Sobrado P Biochemistry; 2013 Dec; 52(51):9089-91. PubMed ID: 24321106 [TBL] [Abstract][Full Text] [Related]
16. The enigmatic reaction of flavins with oxygen. Chaiyen P; Fraaije MW; Mattevi A Trends Biochem Sci; 2012 Sep; 37(9):373-80. PubMed ID: 22819837 [TBL] [Abstract][Full Text] [Related]
17. Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes. Romero E; Gómez Castellanos JR; Gadda G; Fraaije MW; Mattevi A Chem Rev; 2018 Feb; 118(4):1742-1769. PubMed ID: 29323892 [TBL] [Abstract][Full Text] [Related]
18. Structural Determinants of Flavin Dynamics in a Class B Monooxygenase. Campbell AC; Robinson R; Mena-Aguilar D; Sobrado P; Tanner JJ Biochemistry; 2020 Dec; 59(48):4609-4616. PubMed ID: 33226785 [TBL] [Abstract][Full Text] [Related]
19. Tuning of p Pitsawong W; Chenprakhon P; Dhammaraj T; Medhanavyn D; Sucharitakul J; Tongsook C; van Berkel WJH; Chaiyen P; Miller AF J Biol Chem; 2020 Mar; 295(12):3965-3981. PubMed ID: 32014994 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of Nitrone Formation by a Flavin-Dependent Monooxygenase. Johnson SB; Li H; Valentino H; Sobrado P Biochemistry; 2024 Jun; 63(11):1445-1459. PubMed ID: 38779817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]