These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 20807952)

  • 21. Reconstruction of global regulatory network from signaling to cellular functions using phosphoproteomic data.
    Kawata K; Yugi K; Hatano A; Kokaji T; Tomizawa Y; Fujii M; Uda S; Kubota H; Matsumoto M; Nakayama KI; Kuroda S
    Genes Cells; 2019 Jan; 24(1):82-93. PubMed ID: 30417516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrative network analysis of the signaling cascades in seedling leaves of bread wheat by large-scale phosphoproteomic profiling.
    Lv DW; Ge P; Zhang M; Cheng ZW; Li XH; Yan YM
    J Proteome Res; 2014 May; 13(5):2381-95. PubMed ID: 24679076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases.
    Kennelly PJ; Krebs EG
    J Biol Chem; 1991 Aug; 266(24):15555-8. PubMed ID: 1651913
    [No Abstract]   [Full Text] [Related]  

  • 24. Modulation of VEGF receptor 2 signaling by protein phosphatases.
    Corti F; Simons M
    Pharmacol Res; 2017 Jan; 115():107-123. PubMed ID: 27888154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein phosphorylation and its role in archaeal signal transduction.
    Esser D; Hoffmann L; Pham TK; Bräsen C; Qiu W; Wright PC; Albers SV; Siebers B
    FEMS Microbiol Rev; 2016 Sep; 40(5):625-47. PubMed ID: 27476079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphoproteomic analysis provides novel insights into stress responses in Phaeodactylum tricornutum, a model diatom.
    Chen Z; Yang MK; Li CY; Wang Y; Zhang J; Wang DB; Zhang XE; Ge F
    J Proteome Res; 2014 May; 13(5):2511-23. PubMed ID: 24712722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The chloroplast kinase network: new insights from large-scale phosphoproteome profiling.
    Baginsky S; Gruissem W
    Mol Plant; 2009 Nov; 2(6):1141-53. PubMed ID: 19995723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein kinases and protein phosphatases in prokaryotes: a genomic perspective.
    Kennelly PJ
    FEMS Microbiol Lett; 2002 Jan; 206(1):1-8. PubMed ID: 11786249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Convergent signaling pathways--interaction between methionine oxidation and serine/threonine/tyrosine O-phosphorylation.
    Rao RS; Møller IM; Thelen JJ; Miernyk JA
    Cell Stress Chaperones; 2015 Jan; 20(1):15-21. PubMed ID: 25238876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Instant decisions: transcription-independent control of death-receptor-mediated apoptosis.
    Tran SE; Meinander A; Eriksson JE
    Trends Biochem Sci; 2004 Nov; 29(11):601-8. PubMed ID: 15501679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Specificity and spatial dynamics of protein kinase A signaling organized by A-kinase-anchoring proteins.
    Pidoux G; Taskén K
    J Mol Endocrinol; 2010 May; 44(5):271-84. PubMed ID: 20150326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic Analysis of Human Protein Phosphatase Interactions and Dynamics.
    Yadav L; Tamene F; Göös H; van Drogen A; Katainen R; Aebersold R; Gstaiger M; Varjosalo M
    Cell Syst; 2017 Apr; 4(4):430-444.e5. PubMed ID: 28330616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Docking interactions in protein kinase and phosphatase networks.
    Reményi A; Good MC; Lim WA
    Curr Opin Struct Biol; 2006 Dec; 16(6):676-85. PubMed ID: 17079133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of signal transduction through protein cysteine oxidation.
    Cross JV; Templeton DJ
    Antioxid Redox Signal; 2006; 8(9-10):1819-27. PubMed ID: 16987034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Organization of kinases, phosphatases, and receptor signaling complexes.
    Schillace RV; Scott JD
    J Clin Invest; 1999 Mar; 103(6):761-5. PubMed ID: 10079095
    [No Abstract]   [Full Text] [Related]  

  • 36. Zinc in Regulating Protein Kinases and Phosphatases in Neurodegenerative Diseases.
    Zhang HL; Wang XC; Liu R
    Biomolecules; 2022 Jun; 12(6):. PubMed ID: 35740910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. More on target with protein phosphorylation: conferring specificity by location.
    Faux MC; Scott JD
    Trends Biochem Sci; 1996 Aug; 21(8):312-5. PubMed ID: 8772386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteome profiling reveals potential toxicity and detoxification pathways following exposure of BEAS-2B cells to engineered nanoparticle titanium dioxide.
    Ge Y; Bruno M; Wallace K; Winnik W; Prasad RY
    Proteomics; 2011 Jun; 11(12):2406-22. PubMed ID: 21595037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinases and phosphatases in the mammalian circadian clock.
    Reischl S; Kramer A
    FEBS Lett; 2011 May; 585(10):1393-9. PubMed ID: 21376720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Screening of kinase substrates using kinase knockout mutants.
    Umezawa T
    Methods Mol Biol; 2015; 1306():59-69. PubMed ID: 25930693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.