These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 20808396)
1. Fast and accurate algorithm for the computation of complex linear canonical transforms. Koç A; Ozaktas HM; Hesselink L J Opt Soc Am A Opt Image Sci Vis; 2010 Sep; 27(9):1896-908. PubMed ID: 20808396 [TBL] [Abstract][Full Text] [Related]
2. Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals. Koç A; Ozaktas HM; Hesselink L J Opt Soc Am A Opt Image Sci Vis; 2010 Jun; 27(6):1288-302. PubMed ID: 20508697 [TBL] [Abstract][Full Text] [Related]
3. Fast linear canonical transforms. Healy JJ; Sheridan JT J Opt Soc Am A Opt Image Sci Vis; 2010 Jan; 27(1):21-30. PubMed ID: 20035299 [TBL] [Abstract][Full Text] [Related]
4. Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space-bandwidth product. Oktem FS; Ozaktas HM J Opt Soc Am A Opt Image Sci Vis; 2010 Aug; 27(8):1885-95. PubMed ID: 20686595 [TBL] [Abstract][Full Text] [Related]
5. Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms. Healy JJ; Sheridan JT Opt Lett; 2010 Apr; 35(7):947-9. PubMed ID: 20364179 [TBL] [Abstract][Full Text] [Related]
6. Fast numerical algorithm for the linear canonical transform. Hennelly BM; Sheridan JT J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):928-37. PubMed ID: 15898553 [TBL] [Abstract][Full Text] [Related]
7. Improved implementation algorithms of the two-dimensional nonseparable linear canonical transform. Ding JJ; Pei SC; Liu CL J Opt Soc Am A Opt Image Sci Vis; 2012 Aug; 29(8):1615-24. PubMed ID: 23201877 [TBL] [Abstract][Full Text] [Related]
8. Fast volumetric integral-equation solver for acoustic wave propagation through inhomogeneous media. Bleszynski E; Bleszynski M; Jaroszewicz T J Acoust Soc Am; 2008 Jul; 124(1):396-408. PubMed ID: 18646985 [TBL] [Abstract][Full Text] [Related]
9. Digital computation of the complex linear canonical transform. Liu C; Wang D; Healy JJ; Hennelly BM; Sheridan JT; Kim MK J Opt Soc Am A Opt Image Sci Vis; 2011 Jul; 28(7):1379-86. PubMed ID: 21734736 [TBL] [Abstract][Full Text] [Related]
10. Optical implementations of two-dimensional fractional fourier transforms and linear canonical transforms with arbitrary parameters. Sahin A; Ozaktas HM; Mendlovic D Appl Opt; 1998 Apr; 37(11):2130-41. PubMed ID: 18273135 [TBL] [Abstract][Full Text] [Related]
11. Fast and accurate computation of normalized Bargmann transform. Pei SC; Huang SG J Opt Soc Am A Opt Image Sci Vis; 2017 Jan; 34(1):18-26. PubMed ID: 28059230 [TBL] [Abstract][Full Text] [Related]
12. Efficient computation of quadratic-phase integrals in optics. Ozaktas HM; Koç A; Sari I; Kutay MA Opt Lett; 2006 Jan; 31(1):35-7. PubMed ID: 16419869 [TBL] [Abstract][Full Text] [Related]
13. Exponential convergence rate (the spectral convergence) of the fast Padé transform for exact quantification in magnetic resonance spectroscopy. Belkić D Phys Med Biol; 2006 Dec; 51(24):6483-512. PubMed ID: 17148831 [TBL] [Abstract][Full Text] [Related]
15. Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. Hennelly BM; Sheridan JT J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):917-27. PubMed ID: 15898552 [TBL] [Abstract][Full Text] [Related]
16. Fast algorithm for chirp transforms with zooming-in ability and its applications. Deng X; Bihari B; Gan J; Zhao F; Chen RT J Opt Soc Am A Opt Image Sci Vis; 2000 Apr; 17(4):762-71. PubMed ID: 10757185 [TBL] [Abstract][Full Text] [Related]
17. Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees. Tierny J; Gyulassy A; Simon E; Pascucci V IEEE Trans Vis Comput Graph; 2009; 15(6):1177-84. PubMed ID: 19834187 [TBL] [Abstract][Full Text] [Related]
18. Fractional Fourier transform of flat-topped multi-Gaussian beams. Gao YQ; Zhu BQ; Liu DZ; Lin ZQ J Opt Soc Am A Opt Image Sci Vis; 2010 Feb; 27(2):358-65. PubMed ID: 20126248 [TBL] [Abstract][Full Text] [Related]
19. The crystallographic fast Fourier transform. Recursive symmetry reduction. Kudlicki A; Rowicka M; Otwinowski Z Acta Crystallogr A; 2007 Nov; 63(Pt 6):465-80. PubMed ID: 17940325 [TBL] [Abstract][Full Text] [Related]