These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 20808766)

  • 21. An in silico strategy for identification of novel drug targets against Plasmodium falciparum.
    Rout S; Patra NP; Mahapatra RK
    Parasitol Res; 2017 Sep; 116(9):2539-2559. PubMed ID: 28755265
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets.
    Uddin R; Sufian M
    PLoS One; 2016; 11(1):e0146796. PubMed ID: 26799565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prioritizing genomic drug targets in pathogens: application to Mycobacterium tuberculosis.
    Hasan S; Daugelat S; Rao PS; Schreiber M
    PLoS Comput Biol; 2006 Jun; 2(6):e61. PubMed ID: 16789813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Approaches to protozoan drug discovery: phenotypic screening.
    Sykes ML; Avery VM
    J Med Chem; 2013 Oct; 56(20):7727-40. PubMed ID: 23927763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections.
    Cowell AN; Winzeler EA
    Genome Med; 2019 Oct; 11(1):63. PubMed ID: 31640748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protozoan Parasites Glycosylphosphatidylinositol Anchors: Structures, Functions and Trends for Drug Discovery.
    Morotti ALM; Martins-Teixeira MB; Carvalho I
    Curr Med Chem; 2019; 26(23):4301-4322. PubMed ID: 28748758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of Q4D6Q6, a conserved kinetoplastid-specific protein from Trypanosoma cruzi.
    D'Andréa ÉD; Roske Y; Oliveira GAP; Cremer N; Diehl A; Schmieder P; Heinemann U; Oschkinat H; Pires JR
    J Struct Biol; 2020 Aug; 211(2):107536. PubMed ID: 32473201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. APRANK: Computational Prioritization of Antigenic Proteins and Peptides From Complete Pathogen Proteomes.
    Ricci AD; Brunner M; Ramoa D; Carmona SJ; Nielsen M; Agüero F
    Front Immunol; 2021; 12():702552. PubMed ID: 34335615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases.
    Kourbeli V; Chontzopoulou E; Moschovou K; Pavlos D; Mavromoustakos T; Papanastasiou IP
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bromodomains in Protozoan Parasites: Evolution, Function, and Opportunities for Drug Development.
    Jeffers V; Yang C; Huang S; Sullivan WJ
    Microbiol Mol Biol Rev; 2017 Mar; 81(1):. PubMed ID: 28077462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting Kinetoplastid and Apicomplexan Thymidylate Biosynthesis as an Antiprotozoal Strategy.
    Valente M; Vidal AE; González-Pacanowska D
    Curr Med Chem; 2019; 26(22):4262-4279. PubMed ID: 30259810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In silico analyses for the discovery of tuberculosis drug targets.
    Chung BK; Dick T; Lee DY
    J Antimicrob Chemother; 2013 Dec; 68(12):2701-9. PubMed ID: 23838951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dihydroorotate dehydrogenase inhibitors in anti-infective drug research.
    Boschi D; Pippione AC; Sainas S; Lolli ML
    Eur J Med Chem; 2019 Dec; 183():111681. PubMed ID: 31557612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of a subtractive genomics approach for in silico identification and characterization of novel drug targets in Mycobacterium tuberculosis F11.
    Hosen MI; Tanmoy AM; Mahbuba DA; Salma U; Nazim M; Islam MT; Akhteruzzaman S
    Interdiscip Sci; 2014 Mar; 6(1):48-56. PubMed ID: 24464704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Getting the most out of parasitic helminth transcriptomes using HelmDB: implications for biology and biotechnology.
    Mangiola S; Young ND; Korhonen P; Mondal A; Scheerlinck JP; Sternberg PW; Cantacessi C; Hall RS; Jex AR; Gasser RB
    Biotechnol Adv; 2013 Dec; 31(8):1109-19. PubMed ID: 23266393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome comparisons as a tool for antimicrobial target discovery.
    Sun H; Chen HF; Chen R
    Methods Mol Biol; 2013; 993():31-8. PubMed ID: 23568462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Omics data integration facilitates target selection for new antiparasitic drugs against TriTryp infections.
    Rivara-Espasandín M; Palumbo MC; Sosa EJ; Radío S; Turjanski AG; Sotelo-Silveira J; Fernandez Do Porto D; Smircich P
    Front Pharmacol; 2023; 14():1136321. PubMed ID: 37089958
    [No Abstract]   [Full Text] [Related]  

  • 39. Redox proteins as targets for drugs development against pathogens.
    Catalano-Dupuy DL; López-Rivero A; Soldano A; Ceccarelli EA
    Curr Pharm Des; 2013; 19(14):2594-605. PubMed ID: 23116397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring anti-malarial potential of FDA approved drugs: an in silico approach.
    Ramakrishnan G; Chandra N; Srinivasan N
    Malar J; 2017 Jul; 16(1):290. PubMed ID: 28720135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.