These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20808882)

  • 21. Nonstimulated rabbit phonation model: Cricothyroid approximation.
    Novaleski CK; Kojima T; Chang S; Luo H; Valenzuela CV; Rousseau B
    Laryngoscope; 2016 Jul; 126(7):1589-94. PubMed ID: 26971861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-Dependent Pressure and Flow Behavior of a Self-oscillating Laryngeal Model With Ventricular Folds.
    Alipour F; Scherer RC
    J Voice; 2015 Nov; 29(6):649-59. PubMed ID: 25873541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Between-year vocal aging in female red deer (Cervus elaphus).
    Volodin IA; Sibiryakova OV; Vasilieva NA; Volodina EV; Matrosova VA; Garcia AJ; Pérez-Barbería FJ; Gallego L; Landete-Castillejos T
    BMC Res Notes; 2018 Oct; 11(1):737. PubMed ID: 30333068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The minimum glottal airflow to initiate vocal fold oscillation.
    Jiang JJ; Tao C
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2873-81. PubMed ID: 17550186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vocal tract modelling in fallow deer: are male groans nasalized?
    Reby D; Wyman MT; Frey R; Charlton BD; Dalmont JP; Gilbert J
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 29941611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiologic and acoustic differences between male and female voices.
    Titze IR
    J Acoust Soc Am; 1989 Apr; 85(4):1699-707. PubMed ID: 2708686
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Descended and mobile larynx, vocal tract elongation and rutting roars in male goitred gazelles (Gazella subgutturosa Güldenstaedt, 1780).
    Frey R; Volodin I; Volodina E; Soldatova NV; Juldaschev ET
    J Anat; 2011 May; 218(5):566-85. PubMed ID: 21413987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of the ventricular folds in a synthetic larynx model.
    Kniesburges S; Birk V; Lodermeyer A; Schützenberger A; Bohr C; Becker S
    J Biomech; 2017 Apr; 55():128-133. PubMed ID: 28285747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The remarkable vocal anatomy of the koala (Phascolarctos cinereus): insights into low-frequency sound production in a marsupial species.
    Frey R; Reby D; Fritsch G; Charlton BD
    J Anat; 2018 Apr; 232(4):575-595. PubMed ID: 29460389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of epilarynx area on vocal fold dynamics.
    Döllinger M; Berry DA; Montequin DW
    Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling the role of nonhuman vocal membranes in phonation.
    Mergell P; Fitch WT; Herzel H
    J Acoust Soc Am; 1999 Mar; 105(3):2020-8. PubMed ID: 10089619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An acoustic source model for asymmetric intraglottal flow with application to reduced-order models of the vocal folds.
    Erath BD; Peterson SD; Weiland KS; Plesniak MW; Zañartu M
    PLoS One; 2019; 14(7):e0219914. PubMed ID: 31344084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Source-tract interaction with prescribed vocal fold motion.
    McGowan RS; Howe MS
    J Acoust Soc Am; 2012 Apr; 131(4):2999-3016. PubMed ID: 22501076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract.
    Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S
    Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aeroacoustic source characterization in a physical model of phonation.
    McPhail MJ; Campo ET; Krane MH
    J Acoust Soc Am; 2019 Aug; 146(2):1230. PubMed ID: 31472595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vibratory Dynamics of Four Types of Excised Larynx Phonations.
    Li L; Zhang Y; Calawerts W; Jiang JJ
    J Voice; 2016 Nov; 30(6):649-655. PubMed ID: 26476848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.