These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20808883)

  • 21. A spiking neural network model of model-free reinforcement learning with high-dimensional sensory input and perceptual ambiguity.
    Nakano T; Otsuka M; Yoshimoto J; Doya K
    PLoS One; 2015; 10(3):e0115620. PubMed ID: 25734662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Simple Network Architecture Accounts for Diverse Reward Time Responses in Primary Visual Cortex.
    Huertas MA; Hussain Shuler MG; Shouval HZ
    J Neurosci; 2015 Sep; 35(37):12659-72. PubMed ID: 26377457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling sensory-motor decisions in natural behavior.
    Zhang R; Zhang S; Tong MH; Cui Y; Rothkopf CA; Ballard DH; Hayhoe MM
    PLoS Comput Biol; 2018 Oct; 14(10):e1006518. PubMed ID: 30359364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Instructional control of reinforcement learning: a behavioral and neurocomputational investigation.
    Doll BB; Jacobs WJ; Sanfey AG; Frank MJ
    Brain Res; 2009 Nov; 1299():74-94. PubMed ID: 19595993
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emergence of belief-like representations through reinforcement learning.
    Hennig JA; Romero Pinto SA; Yamaguchi T; Linderman SW; Uchida N; Gershman SJ
    PLoS Comput Biol; 2023 Sep; 19(9):e1011067. PubMed ID: 37695776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. State-space Model Based Inverse Reinforcement Learning for Reward Function Estimation in Brain-machine Interfaces.
    Tan J; Zhang X; Wu S; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083150
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Learning latent structure: carving nature at its joints.
    Gershman SJ; Niv Y
    Curr Opin Neurobiol; 2010 Apr; 20(2):251-6. PubMed ID: 20227271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Incremental slow feature analysis: adaptive low-complexity slow feature updating from high-dimensional input streams.
    Kompella VR; Luciw M; Schmidhuber J
    Neural Comput; 2012 Nov; 24(11):2994-3024. PubMed ID: 22845826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ToyArchitecture: Unsupervised learning of interpretable models of the environment.
    Vítků J; Dluhoš P; Davidson J; Nikl M; Andersson S; Paška P; Šinkora J; Hlubuček P; Stránský M; Hyben M; Poliak M; Feyereisl J; Rosa M
    PLoS One; 2020; 15(5):e0230432. PubMed ID: 32421693
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Learning flexible sensori-motor mappings in a complex network.
    Vasilaki E; Fusi S; Wang XJ; Senn W
    Biol Cybern; 2009 Feb; 100(2):147-58. PubMed ID: 19153762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences - a computational approach.
    Nakahara H; Doya K; Hikosaka O
    J Cogn Neurosci; 2001 Jul; 13(5):626-47. PubMed ID: 11506661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Goal-directed learning of features and forward models.
    Saeb S; Weber C; Triesch J
    Neural Netw; 2009; 22(5-6):586-92. PubMed ID: 19616917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural Control of a Tracking Task via Attention-Gated Reinforcement Learning for Brain-Machine Interfaces.
    Wang Y; Wang F; Xu K; Zhang Q; Zhang S; Zheng X
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):458-67. PubMed ID: 25073173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unsupervised Learning and Clustered Connectivity Enhance Reinforcement Learning in Spiking Neural Networks.
    Weidel P; Duarte R; Morrison A
    Front Comput Neurosci; 2021; 15():543872. PubMed ID: 33746728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Value signals guide abstraction during learning.
    Cortese A; Yamamoto A; Hashemzadeh M; Sepulveda P; Kawato M; De Martino B
    Elife; 2021 Jul; 10():. PubMed ID: 34254586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A recurrent neural network framework for flexible and adaptive decision making based on sequence learning.
    Zhang Z; Cheng H; Yang T
    PLoS Comput Biol; 2020 Nov; 16(11):e1008342. PubMed ID: 33141824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual Pretraining via Contrastive Predictive Model for Pixel-Based Reinforcement Learning.
    Luu TM; Vu T; Nguyen T; Yoo CD
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovering diverse solutions in deep reinforcement learning by maximizing state-action-based mutual information.
    Osa T; Tangkaratt V; Sugiyama M
    Neural Netw; 2022 Aug; 152():90-104. PubMed ID: 35523085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.