BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 20808905)

  • 1. Evolutionary systems biology of amino acid biosynthetic cost in yeast.
    Barton MD; Delneri D; Oliver SG; Rattray M; Bergman CM
    PLoS One; 2010 Aug; 5(8):e11935. PubMed ID: 20808905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do amino acid biosynthetic costs constrain protein evolution in Saccharomyces cerevisiae?
    Raiford DW; Heizer EM; Miller RV; Akashi H; Raymer ML; Krane DE
    J Mol Evol; 2008 Dec; 67(6):621-30. PubMed ID: 18937004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast has evolved to minimize protein resource cost for synthesizing amino acids.
    Chen Y; Nielsen J
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35042799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionarily conserved optimization of amino acid biosynthesis.
    Perlstein EO; de Bivort BL; Kunes S; Schreiber SL
    J Mol Evol; 2007 Aug; 65(2):186-96. PubMed ID: 17684697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication.
    Kito K; Ito H; Nohara T; Ohnishi M; Ishibashi Y; Takeda D
    Mol Cell Proteomics; 2016 Jan; 15(1):218-35. PubMed ID: 26560065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational selection and yeast proteome evolution.
    Akashi H
    Genetics; 2003 Aug; 164(4):1291-303. PubMed ID: 12930740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinvestigating the codon and amino acid usage of S. cerevisiae genome: a new insight from protein secondary structure analysis.
    Kahali B; Basak S; Ghosh TC
    Biochem Biophys Res Commun; 2007 Mar; 354(3):693-9. PubMed ID: 17258174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae.
    Hinnebusch AG
    Mol Cell Biol; 1985 Sep; 5(9):2349-60. PubMed ID: 3915540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome reallocation from amino acid biosynthesis to ribosomes enables yeast to grow faster in rich media.
    Björkeroth J; Campbell K; Malina C; Yu R; Di Bartolomeo F; Nielsen J
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21804-21812. PubMed ID: 32817546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of GCD1, a yeast gene required for general control of amino acid biosynthesis and cell-cycle initiation.
    Hill DE; Struhl K
    Nucleic Acids Res; 1988 Oct; 16(19):9253-65. PubMed ID: 3050897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the efficiency of codon-tRNA interactions based on codon usage bias.
    Sabi R; Tuller T
    DNA Res; 2014 Oct; 21(5):511-26. PubMed ID: 24906480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global expression profiling of yeast treated with an inhibitor of amino acid biosynthesis, sulfometuron methyl.
    Jia MH; Larossa RA; Lee JM; Rafalski A; Derose E; Gonye G; Xue Z
    Physiol Genomics; 2000 Aug; 3(2):83-92. PubMed ID: 11015603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic Detection of Amino Acid Substitutions in Proteomes Reveals Mechanistic Basis of Ribosome Errors and Selection for Translation Fidelity.
    Mordret E; Dahan O; Asraf O; Rak R; Yehonadav A; Barnabas GD; Cox J; Geiger T; Lindner AB; Pilpel Y
    Mol Cell; 2019 Aug; 75(3):427-441.e5. PubMed ID: 31353208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of non-canonical amino acids into proteins in yeast.
    Wiltschi B
    Fungal Genet Biol; 2016 Apr; 89():137-156. PubMed ID: 26868890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of Robustness to Protein Mistranslation by Accelerated Protein Turnover.
    Kalapis D; Bezerra AR; Farkas Z; Horvath P; Bódi Z; Daraba A; Szamecz B; Gut I; Bayes M; Santos MA; Pál C
    PLoS Biol; 2015; 13(11):e1002291. PubMed ID: 26544557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of a genome-encoded bias in amino acid biosynthetic pathways is a potential indicator of amino acid dynamics in the environment.
    Fasani RA; Savageau MA
    Mol Biol Evol; 2014 Nov; 31(11):2865-78. PubMed ID: 25118252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape.
    Pokusaeva VO; Usmanova DR; Putintseva EV; Espinar L; Sarkisyan KS; Mishin AS; Bogatyreva NS; Ivankov DN; Akopyan AV; Avvakumov SY; Povolotskaya IS; Filion GJ; Carey LB; Kondrashov FA
    PLoS Genet; 2019 Apr; 15(4):e1008079. PubMed ID: 30969963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AUA1, a gene involved in ammonia regulation of amino acid transport in Saccharomyces cerevisiae.
    Sophianopoulou V; Diallinas G
    Mol Microbiol; 1993 Apr; 8(1):167-78. PubMed ID: 8497191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The isoprenoid biosynthetic pathway in Saccharomyces cerevisiae is affected in a maf1-1 mutant with altered tRNA synthesis.
    Kamińska J; Grabińska K; Kwapisz M; Sikora J; Smagowicz WJ; Palamarczyk G; Zoładek T; Boguta M
    FEMS Yeast Res; 2002 Mar; 2(1):31-7. PubMed ID: 12702319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae.
    Moehle CM; Hinnebusch AG
    Mol Cell Biol; 1991 May; 11(5):2723-35. PubMed ID: 2017175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.